a2 United States Patent

Kominac et al.

US009244912B1

US 9,244,912 B1
Jan. 26, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(735)

(73)

")

@

(22)

(63)

(60)

(1)

(52)

(58)

METHODS AND SYSTEMS FOR
FACILITATING A REMOTE DESKTOP
REDRAWING SESSION UTILIZING HTML

Inventors: Stevan Kominac, Palo Alto, CA (US);
Jeremy Michael Stanley, San Mateo,
CA (US); Curtis Schwebke, Menlo

Park, CA (US)

Assignee: WYSE TECHNOLOGY L.L.C., San
Jose, CA (US)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 599 days.

Appl. No.: 13/557,160

Filed: Jul. 24, 2012

(Under 37 CFR 1.47)

Related U.S. Application Data

Continuation-in-part of application No. 12/965,820,
filed on Dec. 10, 2010, now Pat. No. 8,949,726.

Provisional application No. 61/669,639, filed on Jul. 9,
2012.

Int. CI.

GOG6F 3/00 (2006.01)

GOGF 17/28 (2006.01)

HO4L 29/08 (2006.01)

U.S. CL

CPC ... GOG6F 17/28 (2013.01); HO4L 67/2823
(2013.01)

Field of Classification Search

CPC oo HO4L 67/2823

USPC o 715/740, 744, 760

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,949,412 A 9/1999 Huntsman

6,700,589 Bl 3/2004 Canelones et al.

6,831,665 B2 12/2004 Tsuda et al.

6,854,122 Bl 2/2005 Sheriff et al.

7,167,181 B2 1/2007 Duluk et al. 345/506

7,191,211 B2 3/2007 Tuli ... 709/203

7,441,196 B2* 10/2008 Gottfurcht et al. 715/740

7,864,186 B2 1/2011 Robotham et al.

8,176,428 B2* 5/2012 Tuli .coooovvvvvrininirienne 715/738

8,239,749 B2 8/2012 Williamson et al. .. 715211

8,314,804 B2 11/2012 Fethetal. 345/522

8,402,013 B2 3/2013 Duttaetal. 707/709

8,458,331 B2 6/2013 Chauhan et al. 709/225

8,504,654 B1* 82013 Kominac HO04L 67/08
709/217

(Continued)
OTHER PUBLICATIONS

International Preliminary Report on Patentability; PCT/US2011/
064279; pp. 12.

(Continued)

Primary Examiner — William Titcomb
(74) Attorney, Agent, or Firm — Baker Botts L.L..P.

(57) ABSTRACT

Examples of methods, systems, apparatus, and machine-
readable storage media are provided to facilitate access and
control of a remote desktop of a remote machine by a win-
dows web browser of a client device through a web server
without installing proprietary plug-ins or protocols on the
client device. A web server may translate user input requests
from a web browser into input calls compatible with a remote
desktop display protocol. The web server may receive remote
desktop drawing commands from the remote machine and
translate the remote desktop drawing commands into web
browser drawing updates compatible with the windows web
browser. A web server may communicate with the windows
web browser via HI'TP and communicate with the remote
machine via a remote desktop display protocol.

33 Claims, 50 Drawing Sheets

-
Cang O
paling
o
raquest

anee
with nags
200 rookia

US 9,244,912 B1

Page 2
(56) References Cited 2010/0268941 Al1* 10/2010 Pahlavan GOG6F 9/4445
713/155
U.S. PATENT DOCUMENTS 2010/0269046 Al* 10/2010 Pahlavan G06F7?/51/47146‘§
8,527,563 B2 9/2013 Brugioloccccoomnn.... 707/899 2010/0269047 Al* 10/2010 Pahlavan etal. 715/740
8,580,800 B2* 11/2013 Kominac HO4L. 67/02 2010/0269048 Al* 10/2010 Pahlavan et al. . 715/740
715716 2010/0269152 Al* 10/2010 Pahlavan etal. 726/3
8,694,603 B2 4/2014 Brobstetal. ... 709/217 2010/0274922 Al 10/2010 Reavely
8,789,040 Bl 7/2014 Callary ... T717/178 2010/0281107 Al 11/2010 Fallows et al.
8,803,808 B2 82014 Shreineretal. 345/537 2010/0293598 Al ~ 11/2010 Collart et al.
8,949,463 B2* 2/2015 Kominac GOS6F 17/30905 2011/0119602 A1* 52011 IS0ZU wocoiiivcinineiiiiiinn 715/760
709203 2011/0154212 Al* 6/2011 Gharpure et al. .. T15/738
8,949,726 B2* 2/2015 Kominac GO6F 17/30905 2011/0185286 Al* 7/2011 Moyersetal. 715/752
715740 2012/0017142 Al 1/2012 Nagao 715211
8,966,376 B2* 2/2015 Kominac GO6F 17/30905 2012/0066601 Al* 3/2012 ZaZ_ula et al. ... 715/733
709/217 2012/0078691 Al* 3/2012 Tsai et al. . .. 705/14.4
2002/0032751 Al 3/2002 Bharadwaj 709/218 2012/0079374 AL* 3/2012 Gaddis oo 715/269
2002/0120683 Al 8/2002 Gomes et al. .cccocceerren, 709/203 2012/0079380 AL* 3/2012 Tsaietal. .o 715/716
2004/0190771 Al 9/2004 Eid et al. 2012/0151369 AL* 62012 Kominac H047L12/77/%
2004/0260821 Al 12/2004 Yamamoto et al. 709/229 .
2006/0005114 Al 1/2006 Williamson etal. 715/502 2012/0151370 AL* 6/2012 Kominac GOGE 17130500
2006/0256130 Al 11/2006 Gonzalez « -
2007/0079244 Al 4/2007 Brugiolo ...ccocooooeevveene. 715/740 2012/0151371 AL* 672012 Kominac ... GOGE 1;/1350/228
2007/0165035 AL 7/2007 Duluk efal. .oooccov. 345506 3012/0151372 Al 62012 Kominac etal. 715/740
2007/0198698 Al 8/2007 Boydetal. 709/224 2012/0151373 Al* 6/2012 Kominac GOGF 17/30905
2007/0260702 Al 11/2007 Richardson et al. 715/740
2007/0263007 Al 11/2007 Robotham et al. 2012/0266061 Al 10/2012 Williamson etal. 715/234
2007/0282951 Al 12/2007 Selimis et al. 2012/0331038 Al 12/2012 Yang ... 709/203
2007/0288855 Al 12/2007 Rohrabaugh et al. 2014/0258390 Al 9/2014 Annamalaisami et al. ... 709/203
2008/0098101 Al 4/2008 Black etal. 709/223 OTHER PUBLICATIONS
2008/0198409 Al 8/2008 Bodin et al.
2008/0263010 A1 10/2008 Roychoudhurietal. 707/3 International Preliminary Report on Patentability; PCT/US2011/
2008/0313545 Al 12/2008 Patelet al. ..ooovvrovveeo... 715/738 064277 pp. 10.
2009/0195537 Al 8/2009 Qui et al. International Preliminary Report on Patentability; PCT/US2011/
2009/0296657 Al 12/2009 Omar et al. 064284; pp. 9, Aug. 15, 2013.
2009/0307428 Al 12/2009 Schmieder etal. 711/118 International Preliminary Report on Patentability; PCT/US2011/
2010/0070887 Al* 3/2010 Murrett etal. 715/760 064282; pp. 8, Sep. 19, 2013.
2010/0115145 Al 5/2010 Banerjee et al. .. 710/10 “Windows Forms”, Wikipedia, the free encyclopedia, retrieved from
2010/0194753 Al* 8/2010 Robotham et al. 345/428 http://en.wikipedia.org/wiki/Windows_ Forms, 3 pages, May 25,
2010/0235476 Al 9/2010 Linetal. 709/219 2012.
2010/0262650 Al 10/2010 Chauhan et al. 709/203 “Comparison of the Java and NET platforms”, Wikipedia, the free
2010/0268762 Al 10/2010 Pahlavan et al. encyclopedia, retrieved from http://en. wikipedia.org/wiki/Compari-
2010/0268828 Al* 10/2010 Pahlavanetal. 709/227 son_of the Java and NET_ platforms, 10 pages, Dec. 11,2014.
2010/0268939 Al 10/2010 Pahlavanetal. 713/155
2010/0268940 Al 10/2010 Pahlavanetal. 713/155 * cited by examiner

US 9,244,912 B1

Sheet 1 of 50

Jan. 26, 2016

U.S. Patent

AR E

i

PWITR

o

o

dpenag

00k

gl

GeL

Ot

U.S. Patent Jan. 26, 2016 Sheet 2 of 50 US 9,244,912 B1

200A

Client Device Client Devige
202 202

206
NETWORK &

SERVER
208
NETWORK 206
Remote Machine Remote Machine
204 204

FIG. 2A

U.S. Patent

Jan. 26, 2016 Sheet 3 of 50 US 9,244,912 B1
Client Device Client Device
202 202
Remote Machine Remaote Maching
204 NETWORK {—— 204
208
SERVER
208
FIG. 2B
Remote Deskiop = Bitmap A00C
PN
g \
Ve
»7 450 |
G J t
SIS e
S 452/ -
N~— e e -

FIG. 4C

U.S. Patent Jan. 26, 2016 Sheet 4 of 50 US 9,244,912 B1

300A

Client Device

)
e
jw)

Display

313

Script Clignt

image of Remole
AT and B Sorint Deskiop and

Coordinates HERR B

Web Agplication Comtainer

Y i
o Loag Polling
HTTP Handler Handier Module

244

342

Drawing Commands Ouesue ~ Shared Mamory

Ramote Dasktop Client

Sernoke Desiior Srotnhat

Remote Deskiop Server

FIG. 3A

U.S. Patent Jan. 26, 2016 Sheet 5 of 50 US 9,244,912 B1

3008

Client Device

Display
314 313

Canvas Script Client

image of Remcle
Dreskiop and
Coordinate

PR el e HTYE B

Web Application Container

Long Faiting
Handisr Moduie

42

HTTP Handler
344

Nofiification

Snared Memory 50

Remote Deskiop Server

FIG. 3B

U.S. Patent Jan. 26, 2016

Sheet 6 of 50 US 9,244,912 B1

meomrirg ong
bl palliag rogarsty e

Davge ared
oomeciian, mouss, and :‘? gy Gty vpcin

Lo bt g Bandis 424

Frst, preck for pending drawing
cormmangds. If nore, add tyis
requist o Drawing Request

Crrsue; aherwise pEes o HTTR

snciuce dirty e age ang
Cnadinslan i g frspoine

Hatrier

Rrawing

Ty Netification, pass tve first
BERGING drawing rejusst InHTTR
Handizr

444

daen lmtvep

ity Cocrdinates Sacd

femate Rasktop Chent

FIG. 4A

U.S. Patent

Jan. 26, 2016 Sheet 7 of 50

US 9,244,912 B1

frcom ing: ndged A :;tr;;mpm:d with mmim fong or
connaction, mauss, and e
keybaard HYTR reguetx coundinates diranwing updedey

b}

=iy Potting Handir 424
First chedk for pending drawing
commands, I n , add tnis
reduEst b Drawing Raquest
Tadpue; oherwiss pass to BTTP

Handler

Dz'awing Peguests DQuaty

426

Dn HBotification, pess the firsy

pending drawing reguest o HTTP
Handier

444
Jmws

wi B e

ity Coordinatas Pocd

Rerante Deskiop Client

FIG. 4B

U.S. Patent Jan. 26, 2016 Sheet 8 of 50 US 9,244,912 B1

g -
palfiny
HTTE

rRguast

HITe

ez
with dage
and e

FIG. 5

US 9,244,912 B1

Sheet 9 of 50

Jan. 26, 2016

U.S. Patent

9 "Oid

(69 ’
SULPBIAL 55 Fanieg dop{sad SI0WaY
Nowsy
> %) ety dopgse somay
\ 4
puswituo’y mduj
PURIOUWIC))
xeypueyy anduy o8y < Supmeicy ueaiog
029
\4
BoURues
T uoneonddy
Reue
L E M Ia[puR} pULTINO.) Suimeld]
PURILTHO S rmcw&m@ﬂ AOUSH
[ORU0T) UOISSg
019 €9
09
oTIdN)
WD 1sanboy SPUBIBING)
HOROIHUOD mdy Swrragy

US 9,244,912 B1

Sheet 10 of 50

Jan. 26, 2016

U.S. Patent

L 'Ol

¢

CBEL

@

=

S0L

SR

BUDBY SI0WIaY

AR

)
2

BNBNE SPUBLLILICD)
Gy

npoK _m:,.:.mI
Guigog Buos

sadepy
JRPUBH i i+

3RALRS ek Wdiog

k,

i
i
i
i
.

o8 Bulponosuel |

JISMOIE 99

&>
<

v

004

U.S. Patent Jan. 26, 2016 Sheet 11 of 50 US 9,244,912 B1
Client Device
802
Browser
810 Display
804
HTML Canvas Script Glient
812 < &4
A
HTTP HTTEP
Drawing Updates 28DONSE
Requesis
Web Server HTTP
220 input
R ¥ Requests
Web Application
822 Asychronous <
HTTP Handler
824
fputs Drawing
Commands
Y
Remotle Deskiop Client Wrapper
828
A

Remote Machine
830

Y

Remate Desktop Server
832

FIG.

SA

U.S. Patent Jan. 26, 2016

HTMLES Canvas

812

HYTP Protocol Data

Sheet 12 of 50

JavaSoript Client

HTTP Baquests
{for drawing
spehaten}

US 9,244,912 B1

HTTP Responss
{containing updated
drawing date and

coordinatey)

Wel Application
827

824

Asyachronsus HTTP Handisr

Remote Deasktop CllentWrapper

826

Remote Desktop Protocol data

Ramote Deglitop Server
832

FIG. 8B

HIT? Baguests

U.S. Patent Jan. 26, 2016 Sheet 13 of 50 US 9,244,912 B1

o f
drawing updates

HTIP Response fm‘
2 i

pesian;

poet

drawing coovdinates, pam
- reguest o HTTF Handie
Respanse Ready., B add
t b Drawing Reguest

Respond with updated
immege and ¥ coordinates

Memory Bitmsep Doy Ty

922

FIG. 9

US 9,244,912 B1

Sheet 14 of 50

Jan. 26, 2016

U.S. Patent

112

RUE

fobss

000L

US 9,244,912 B1

Sheet 15 of 50

Jan. 26, 2016

U.S. Patent

L 9Id

BRI G4k Wiy wyep Bustnenl

U.S. Patent Jan. 26, 2016 Sheet 16 of 50 US 9,244,912 B1
1200
{—-
/\ A
1204 —] : 1 206:
<-~l§ RECEIVER |
i
1202 | |
, 1209
PROCESSING
SYSTEM < -%’ TRANSMITTER :
| 1
1222 —\ — 121D
MACHINE-
1224 B o <~ READABLE MEDIUM
)T ! "
| MACHINE- |
| READABLE : < > RISPLAY
+ MEDIUM i
L"'"""j" — 1214
1219 < -3 KEYPAD
1216
k-3 INTERFACE

FIG. 12

U.S. Patent Jan. 26, 2016 Sheet 17 of 50 US 9,244,912 B1

1300

providing a web browser having 2D rendering capability
(1302)

providing a web server having an application container, a remote deskiop
chient wrapper, and a drawing commands queue
{1304)

recetving input commands from the web browser for controlling a remote

machine
(1306)

in response, translating the input commands from the protocol of the web

server to the protocol ef the remote machine
{1308)

'

sending the input commands to the remote machine
(1310}

FIG. 13A

U.S. Patent Jan. 26, 2016 Sheet 18 of 50 US 9,244,912 B1

1360

N

receiving drawing commands and coordinates from remote machine
(1312)

'

in response, translating the drawing commands and coordinates {rom the
protocol of the remote machine to the Java graphics commands
(1314)

'

in response, generating an image of the remote desktop of the remote
machine in the web server
{1316)

l

unionizing the image and the coordinates
{1318}

responding to a drawing request
(1323

sending the image and the coordinates to the web browser for display
(13223

FIG. 13B

U.S. Patent Jan. 26, 2016 Sheet 19 of 50 US 9,244,912 B1

1400-A

receiving, at the transcoding server, a remote desktop drawing command
based on an image of the remote deskiop of the remote machine, wherein
the remote desktop drawing conunand is compatible with g remote
desktop display protocol utilized by the remote machine
{(1402-A})

l

translating, at the transcoding server, the remote desktop drawing
command into a web browser drawing update that is compatible with the
web browser
{1404-A)

\ 4

tacilitating providing the web browser drawing update from the
transcoding server to the web browser of the client device utilizing HTTP
during a remote deskiop session between the client device and the remote
machine
{1406-A)

!

wherein the remote desktop display protocol is a push protocol
{1408-A)

wherein HTTP s a pull protocol
(1410-A)

FIG. 14A

U.S. Patent Jan. 26, 2016 Sheet 20 of 50 US 9,244,912 B1

1400-B

\

code for receiving, at the transcoding server, 3 remote desktop drawing AN

command based on an image of the remeie desktop of the remote

A

machine, wherein the remote desktop drawing corarnand is compeatibie
with a remote desktop display protocol utilized by the remote machine
{1402-B)

code for trausiating, at the ranscoding server, the remote deskiop
rawing command into a web browser drawing update that (s
compatible with the web browser
{1404-B)

code for facilitating providing the web browser drawing update from the
transcoding server to the web browser of the client device using HT'TP
durnipg a remote deshtop session between the client device and the
remote machine
{1406-8)

A
Y

wherein the remote desktop display protocol is a push protocol
{1408-B)

wherein HTTP is a puil protocol
{1416-B}

FIG. 14B

U.S. Patent Jan. 26, 2016 Sheet 21 of 50 US 9,244,912 B1

1400-C

module for receiving a remote desktop drawing coramand based onan

image of the remote desktop of the remote machine, wherein the

A

remote deskiop drawing command is compatible with a remote

desktop display protocol utilized by the remote machine

(1402-C)

module for translating the remote desktop drawing conmand into a
web browser drawing update that is compaiible with the web browser <
{1404-C)

modiide for facilitating providing the web browser drawing updaic
from the transcoding server to the web browser of the client device
utihizing HTTP during a remote desktop session between the client
device and the remote machine
{14006-C)

wherein the remote desktop display protocol is a push protocol
{1408-C)

wheretn HTTP is a pull protocol
{1410-C)

A

FIG. 14C

U.S. Patent Jan. 26, 2016 Sheet 22 of 50 US 9,244,912 B1

1500-A

\

receiving, at the transcoding server, a user input reguest from the web
browser at the clicnt device for access and control of the remote machine,
wherein the web browser supports a 2D canvas and dynamie drawing
(1502-A)

fransiating, at the transcoding server, the user input request into an input
conwnand compatible with a remote desktop display protocol to be
utitized by the transcoding server for facilitating commumication with the
remote maching
(1504-A)

| receiving, at the transcoding server, a remote desktop drawing command |
' from the remote machine in response to the input command ‘
(1506-A)

translating, at the transcoding server, the remote desktop drawing
command into a drawing update compatible with the hypertext markup
language

(1508-A)

l

facilitating providing the drawing update from the transcoding server to
| the web browser
(1510-A)

FIG. 15A

U.S. Patent Jan. 26, 2016 Sheet 23 of 50 US 9,244,912 B1

156G-B

X

code for receiving, at the transcoding server, 3 user mpat request from

the web browser at the client device for access and conirol of the

remate maching, wherein the web browser supports 2 2D canvas and
dynamic drawing
(1502-B)

code for translating, at the transcoding scrver, the user input request

mito an input command compatible with a remote desktop display

-,
v

protocol to be utilized by the transcoding server for facilitating
communication with the remots machine
{1504-B)

cade for receiving, at the franscoding server, a remote deskiop
drawing command from the remote machine n response to the input
command
{1506-8)

A

code for translating, at the transcoding server, the remote deskiop
drawing command into a drawing update compatible with the
hypertext markup language
(1508-B)

A

code for facilitating providing the drawing update from the
transecding server to the web browser
(1510-B)

A

FIG. 15B

U.S. Patent Jan. 26, 2016 Sheet 24 of 50

1308-C

US 9,244,912 B1

module for receiving a user input request from the web browser at the
chient device for access and cordrol of the remote machine, wherein the
web browser supports 2 2D canvas and dynamic drawing
{1502-C)

module for transiating the user inpat request into a0 input command

compatible with a remote deskiop display protocal fo be utilized by the

transcoding server for facilitating communication with the remote
machine
{1564-C)

module for receiving 3 remote deskiop drawing command from the
remote maching in response to the nput soramand
{1306-C)

module for transisting the remwote deskiop drawing conunand inic 2
drawing update compatible with the hypertext markup langoage
{1508-3

module for facilitating providing the drawing update from the
transcoding server to the web browser
{15310-0)

AN
g »]
< »|
N

FIG. 15C

U.S. Patent Jan. 26, 2016 Sheet 25 of 50 US 9,244,912 B1

1600-A

N

receiving, at the transcoding server, drawing requests from the web
browser at the client device

(1602-A)

l

receiving, at the transcoding server, a remote desktop drawing command
from the remote machine using a remote desktop display protocol.
wherein the remote desktop drawing command 1s based oo an image of a
remote desktop of the remote machine
{1604-A}

l

translating, at the transcoding server, the remote desktop drawing
command into a display image and drawing coordinates for the display
image

{1 606—A)

l

placing, at the transcoding server, the drawing coordinates into an HTTP |
response header 5
(1608-A)

A4

in response to at least one of the drawing requests, faciiitating providing
the display image and the drawing coordinates together to the web
browser in a single HTTP response, for drawing the display image of the
remote desktop at the web browser, wherein the single HTTP response
cornprises the HTTP response header
{(1610-A)

FIG. 16A

U.S. Patent Jan. 26, 2016 Sheet 26 of 50 US 9,244,912 B1

1600-B

code for receiving, at the ranscoding server, drawing requests from

Y

the web browser at the client device
{1602-B}

code for receiving, at the transcoding server, a remots desktop

drawing command from the remote machine using a remote desktop

display protocol, wherein the remote desktop drawing command is »
based on an image of a remote desktop of the remote machine
(1604-B)

code for translating, at the transcoding server, the remote deskiop
drawing command into a display image and drawing coordinates for
the display image
{1606-B)

code for placing, at the transcoding server, the drawing coordinates
inte an HTTP response header
(160%-11)

code for in 1esponse 1o at least one of the drawing requests,
facilitating providing the display image and the drawing coordinates
together to the web browser in a single HTTP response, for drawing « R
the display tmage of the remote desktop at the web browser, wherein
the single HTTP response comprises the HTTP response header
{(1610-B)

FiG. 168

U.S. Patent Jan. 26, 2016 Sheet 27 of 50 US 9,244,912 B1

1660-C

D)

module for receiving drawing requests from the web browser at the

Y

client device <
{1602-C)

module for recetving a remote deskiop drawing command from the
remote machine asing a remote desktop display protocol, wherein the
remate deskiop drawing comvmand s based on an image of a remcte < —>
desktop of the remote machine
{1604-C)

module for transtating the remote desktop drawing command into 2
display image and drawing coordinates for the display image <
{1606-C)

moditle for placing the drawing coordinates info an HTTP response
header e
{1608-C)

module for, in response to at least one of the drawing requests,
facilitating providing the display image and the drawing coordinales
together to the web browser in 3 single HTTP respounse, for drawing the |
display image of the remote deskiop at the web browser, wherein the |
single HTTP response comprises the HTTP respopse header
{1610-C)

FIG. 16C

U.S. Patent Jan. 26, 2016 Sheet 28 of 50 US 9,244,912 B1

[
~.}
<&
<>

700-A
receiving, at the transcoding server, a plurality of drawing requests from |
the web browser at the client device, using HTTP, wherein HTTP s a

pull protocol
(1702-A)

handling, at the transcoding server, the plurality of drawing requests as
long polling requests
{(1704-A)

receiving, at the transcoding server, a remote desktop drawing command
from the remote machine
{1706-A)

v

sranslating, at the transcoding server, the remote desktop drawing
command into a web browser drawing update, wherein the remote
deskiop drawing command is compatible with a push protocol, wherein
the web browser drawing update is compatible with HTTP, wherein
HTTP 15 a pull protocol
{1708-4)

v

facilitating providing the web browser drawing update from the
transcoding server io the web browser of the client device, uiilizing
HTTP, as a response to at least one of the phuality of drawing requests
from the web browser
(1710-A)

FIG. 17A

U.S. Patent Jan. 26, 2016 Sheet 29 of 50 US 9,244,912 B1

1760-B

code for receiving, at the transcoding server, a plurality of drawing
requests from the web browser at the client device, using HITP, wherein |
HTTP is a pull protocol

{1702-8)

4
¥

code for handiing, at the transcoding server, the plurality of drawing
requests as long poliing requests
{(1704-8)

A
\d

code for receiving, at the transcoding server, a remote deskiop deawing
cornraand from the reraote machine
(1706-B)

A
) 4

code for translating, at the transcodiong server, the remote deskiop
drawing cornroand into a web browser drawing vpdate, wheyetn the
remote deskiop drawing command 1s compatible with a push protocol,
wherein the web browser drawing update is compatible with HTTP,
wherein HTTP is a pull protocol
(1708-B)

Y

cade for faciiitating providing the web browser deawing update from the
transcoeding server to the web browser of the client device, ntilizing
HTTP, as a response io at least one of the plurality of drawing requests
from the web browser
{1710-B}

A

FIG. 17B

U.S. Patent Jan. 26, 2016 Sheet 30 of 50 US 9,244,912 B1

1760-C

module for receiving a plurality of drawing regnests from the web browser

ai the client device, using HTTP, wherein HTTP s a pull protocol «
{1702-C)

module for handling the plurality of drawing requests as long polling

A

requests
{1704-C)

module for receiving a remote deskiop drawing command from the remote
machine < »
(1706-C)

maodule for translating the remote deskiop drawing command into a web
browser drawing update, wherein the remote deskiop drawing command 1s
compatible with a push protocol, wherein the web browser drawing update is
compatible with HTTP, wherein HTTP is a pull protocol
{1708-C)

A

module for facilitating providing the web browser drawing update from the
transcoding server to the web browser of the client device, wiilizing HTTP,

as a response to at least one of the plurality of drawing requests from the < >
web browser
(1710-C)
<\/

FIG. 17C

U.S. Patent Jan. 26, 2016 Sheet 31 of 50 US 9,244,912 B1

1800-A

recetving, at the adapter, an input request from the web browser utilizing
a request-response protocol, wherein the request-response profocol is a
pull protocal
(1802-A)

A

translating, at the adapter, the nput request mwto an input command
compatible with a remote desktop display protocol to be utilized by a
remote desktop client at the transcoding server for facilitating
communication with the remote desktop server at the remote machine,
wherein the remote deskiop display protocol is a push protocol
{(1804-4A)

'

providing the fnput command to a remote desktop client at the
transcoding server, {o facilitate providing the mput command fo the
remote desktop server utilizing the remote desktop display protocol
{1806-A)

A 4

receiving, at the adapter, a remote desktop drawing command from the
remote desktop server in response o the input command, wherein the
remote deskiop drawing coraomand is based on an image of a remote
desktop of the remote machine
(1808-A)

v

translating, at the adaptor, the remote desktop drawing command into a
graphics drawing conunand compatible with the transcoding sexver to
allow the transcoding server to facilitate providing a web browser
drawing update to the web browser, wheregin the web browser drawing
update 13 compatible with the web browser
(1810-4)

FIG. 18A

U.S. Patent Jan. 26, 2016 Sheet 32 of 50 US 9,244,912 B1

code for receiving, at the adapier, an toput request from the web browser

utilizing a request-response protocol, wherein the request-response

¥

protocol is 2 pull protocol
{1802-B)

code for translating, at the adapier, the input reguest into an inpat
cormmand corapatible with a remote desktop display protocel to be

utilized by a remote desktop client at the transcoding server for

Y

factlitating comnmnmication with the remote deskiop server at the remote
sachine, wherein the remote desktop display protocol 15 a push protocol
{1804-B)

code for providing the input command 1o a remote deskiop client at the
transcoding server, to factlitate providing the input command to the
reraote desktop server utilizing the remoie desktop display protosol
{1806-B)

code for receiving, at the adapler, a remote deskiop drawing command
from the remote deskiop server in response to the input command,
wheretn the remote desktop drawing corarmand is based on an image of a «
remnote deskiop of the remote machine
{1808-B)

Y

code for transiating, at the adapter, the remote desktop drawing
command into a graphics drawing command compatible with the
transcoding server to allow the transcoding server to facilitate providing
a web browser drawing update to the web browser, wherein the web
browseér drawing update is compatible with the web browser
{1810-B)

FIG. 18B

U.S. Patent Jan. 26, 2016 Sheet 33 of 50 US 9,244,912 B1

1860-C

b

modale for receiving 2n (nput request from the web browser utilizieg a

request-response protocol, whercin the request-response protocel is a pull

hd

Proiocn!
{1802-C}

module for transiating the input request into an input command
compatible with a remoie desktop display protocol 1o be stilized by a

remote desktop client at the transcoding server for facilifating

corarmnication with the remote deskiop server at the remote machine,
wherein the remote desktop display protocol is a push protocol
{(1804-Cy

module for providing the input cormmand to a remote deskiop client at the
transcoding server, to facilitate providing the iapet command (o the
remote deskiop server utilizing the remote desktop display protocel
{1806-C)

module for receiving a remote desktop drawing command from the remote
desktop server in response to the input command, wherein the remote
desktop drawing command is based on an nage of a remote deskiop of |«
the remote machine
{1808

v

module for translating the remote deskiop drawing cornmand (o a
graphics drawing command compatible with the transcoding server to
allow the franscoding server to facilitaie providing a web browser drawing
update to the web browser, wherein the web browser drawing update is
compatible with the web browser
{1810-C)

FIG. 18C

U.S. Patent Jan. 26, 2016 Sheet 34 of 50 US 9,244,912 B1

1900-A
X
AN
code for the HTTP handler
{(1902-A}
code for the remote deskiop client adapler B N

{1904-A)

N

FIG. 19A

U.S. Patent Jan. 26, 2016 Sheet 35 of 50 US 9,244,912 B1

1900-B

recerving, at the transcoding server, a connection request from the web
browser utilizing HTTP
{1902-B)

'

translating, at the transcoding server, the connection reqguest into a session

control command compatible with a remote desktop display protocel
{1904-B)

Y

providing the session control command fo a remote desktop client of the
transcoding server for providing the session control command to a remote
desktop server of the rermote machine and for establishing, controlling or
terminating a remote desktop session with the remote deskiop server
(1906-B)

\

receiving, at the transcoding server, a user input reguest from the web
browser ulilizing HTTP
{1908-B)

v

translating, at the transcoding server, the user input reguest into a remote
desktop input command compatible with the remote deskiop display
protoco]
{1910-B)

'

providing the remote desktop input comunand to the remote desktop client
for providing the remote desktop input command to the rersote desktop
sarver
(1912-B)

FIG. 19B

U.S. Patent Jan. 26, 2016 Sheet 36 of 50 US 9,244,912 B1

1900-C

vecetving, at the transcoding server, a remote desktop drawing command
from the remote deskiop server via the remote deskiop client in response 1o
the remote desktop input command, wherein the remote desktop drawing
command is compatible with the remaote desktop display protacol, and
wherein the remote desktop drawing command represents a portion of an
entire image of the remote deskiop
{1902-C)

'

ransiating, at the transcoding server, the remote desktop drawing command

into a graphics drawing command compatible with the transcoding server
(1904-C)

Y
updating, at the transcoding server, a portion of an image and coordinates
based on the graphics drawing command
{18460

Y

generating, at the transcoding server, an image file based on the updated
portion of the image
{1908-C)

l

obtatning drawing coordinates based on the coordinates
{1910~

l

facilitating providing & web browser drawing update w0 the web browser in
response to a drawing request from the web browser, wherein the web
browser drawing update coraprises the inage file and the drawing
coordinates, and wherein the web browser drawing update is compatible
with the web browser
{(1912-Cy

FIG. 18C

U.S. Patent Jan. 26, 2016 Sheet 37 of 50 US 9,244,912 B1

1900-D

module for receiving a connection request from the web browser
utilizing HTTP « »|
{(1902-t1)

module for translating the connection request into a session control

A

comumand compatible with a remote desktop display protocol
{1904-D)

module for providing the session control command to a remote desktop
client of the transcoding server for providing the session control
command {6 a rerote desktop scrver of the remote machine and for
establishing, controfling or terminating a remote desktop session with
the remote deskiop server

(1906-D)

module for receiving a user input request from the web browser
utihizing HTTP <
{1908-I0)

meodule for translating the user input request info a remote desktop
input command compatible with the remote desktop display protocol
{1916-)

module for providing the remote desktop imput command to the reraote
desktop client for providing the remote desktop input command to the B
remote deskiop sarver

{i912-D N

FIG. 19D

U.S. Patent Jan. 26, 2016 Sheet 38 of 50 US 9,244,912 B1

{900-E

X

module for yecerving a remote desktop drawing command from the remote N
desktop server via the remoie desktop client in reaponse to the renwte

desktop mput command, wheremn the remote deskiop drawing command is

compatible with the remote deskiop display protocol, and wherein the
remote deskiop drawing command represents a portion of an entire image
of the remote desktop
{(1902-E)

modale for translatmg the remote desktop drawing command into a

graphics drawiog cormruand corapatible with the traoscading server
{1904-E)

module for updating & portion of an image and coordinates based on the
graphics drawing conumand «
(1906-E)

medule for generating an image file based on the updated portion of the
image <
{1908-E)

maodule for obtaining drawing coordinates based on the coordinates
(1910-1)

raodde for facilitating providiag a web browser drawing update to the
web browser in response to a drawing request from the web browser,
wherein the web browser drawing opdate comaprises the image file and the >
drawing coordinates, and wherein the web browser drawing update is N
compatible with the web browser
{1912-F)

FIG. 19E

U.S. Patent Jan. 26, 2016 Sheet 39 of 50 US 9,244,912 B1

2000-A

receiving, at the web server, a remote desktop drawing command based on
an image of the remote desktop of the remote machine, wherein the remaote
desktop drawing commmand is compatible with a remote desktop display
protocol utilized by the remote machine
2002-A)

'

translating, at the web server, the remote desktop drawing command into a

web browser drawing update that is compatible with the web browser
{2004-A)

\

factlitating providing the web browser drawing update from the web server
to the web browser of the client device utilizing HTTP during a remote
desktop session between the client device and the remote machine
{2006-A)

FIG. 20A

U.S. Patent Jan. 26, 2016 Sheet 40 of 50 US 9,244,912 B1

20066-B

code for causing one or more processors o facilitate receiving a
remote deskfop drawing command based on an image of @ remote desktop of
a romote machine, wherein the remote desktop drawing command is €]

compatible with a remote desktop display protocol of the remote machine

(2002-B)

code for cansing one Or more processors 1o translate the remote desktop
drawing commmand into @ web browser drawing update that is compaiibie
with 3 web browser
{2004-B)

code for causing one or more processors to facilitate providing the web
browser drawing update utilizing hypertext transfer protocol (HTTP) during
a remote desktop session between a client device for the web browser and <>
the remote machine

(2006-R)

FIG. 20B

U.S. Patent Jan. 26, 2016 Sheet 41 of 50 US 9,244,912 B1

2000-C

™

randule for receiving a rernote deshitop deawing command based on
Pan innage of the remote deskiop of the remote machine, wherein the remote

s desktop deawing cornmand is compatible with a remote deskiop display <

s protocel utilized by the remote machine

(2002-C)

module for ranslating the remote deskiop drawing command into a web

A

browser drawing update that is compatible with the web browser
(2004-C)

radinle for trauslating the remote deskiop drawing command into a web
browser drawing updale that is compatible with the web browser
{2006-C)

A

FIG. 20C

U.S. Patent Jan. 26, 2016 Sheet 42 of 50 US 9,244,912 B1

2100-A

X

recerving, at the web server, a user inpul request from the web browser at the

client device for access and conirol of the remote machine, wherein the web
browser supports a 2D canvas and dynamic drawing
(2102-A)

v

translating, at the web server, the user input request into an input command

compatible with a remote deskiop display protocol to be utilized by the web
server for facilitating communieation with the remote machine
{2104-A)

'

receiving, at the web server, a remote desktop drawing command from the
remote machine in response to the input command
(2106-A)

'

translating, at the web server, the remwote desktop drawing command into a
drawing update compatible with the hypertext markup languaage
{2108-A)

Y

facilitating providing the drawimg update from the web server to the web
browser protocol
(2110-A)

FIG. 21A

U.S. Patent Jan. 26, 2016 Sheet 43 of 50 US 9,244,912 B1

2100-B

code for causing one Or MOTe Processors to receive a user input request from
the web browser at the client device for access and control of the remote
PR——

machine, wherein the web browser supports a 2D} canvas and dynamic
drawing
{2102-B)

cade for causing one or more progessors o ranslate the user input request
nto an input command compatible with a remote desktop display protocol to
be atilized by the web server for facilitating commaunication with the remote >
machine
{2104-B)

code for causing one or more processors 1o receive a remote desktop
drawing cormmand from the remote maching in response to the mput

e >
command
{2106-B)
code for causing one or more processors o transiate the remote desktop
drawing comvmand o a drawing update compatible with the hyperiexi .
markup language
(210R-B)
code for causing one or more processors to facilitate providing the drawing
update from the web server to the web browser profocol «—>
{2110-B)
A

FIG. 21B

U.S. Patent Jan. 26, 2016 Sheet 44 of 50 US 9,244,912 B1

2160-C

maodule for receiving a aser input reguest from the web browser at the client

device for access and control of the remote machine, wherein the web

A

browser supports & 2D canvas and dynamic drawing
{2102-C)

modulde for transiating the user input request info an input command
compatible with a remote deskiop display protocal to be utilized by the web <
server for facilitating communication with the remote machine
(2194-C)

module for receiving a remote desktop drawing command from the remote
machine in response to the input command G
(2106-C)

randule for transiating the remate deskiop drawiag command info 3 drawing
update compatibie with the hypertext markup langrage e
{2108-C) |

module for facilitating providing the drawing spdate from the web server to
the web browser protocol < p
(2110-C)

FIG. 21C

U.S. Patent Jan. 26, 2016 Sheet 45 of 50 US 9,244,912 B1

2200-A

receiving, at the web server, drawing requests from the web browser at the
client device
{2202-A)

'

receiving, at the web server, a remote desktop drawing command from the

rernote machine using a remote desktop display protocol, wherein the
reiaote deskiop drawing comymand is based on an image of a remate desktop
of the remote maching
{2204-A)

'

translating, at the web server, the remute deskiop drawing conumand into a
display image and drawing coordinates for the display image
{2206-A}

placing, at the web server, the drawing coordinates into an HTTP response
header
{2208-A)

'

in response to at least one of the drawing requests, facilitating providing the
display image and the drawing coordinates together to the web browserina
single HTTP response, for drawing the display image of the remote deskiop
at the web browser, wherein the single HY'TP response comprises the HTTP
response header
{2210-A}

FIG. 22A

U.S. Patent Jan. 26, 2016 Sheet 46 of 50 US 9,244,912 B1

2200-B

code for cansing one or more processors to receive drawing requests from

the web browser at the client device
{2202-B)

code for causing one or more processors o facilitate receiving a remote

desktop drawing command from the remote machine using a remote deskiop

A
Y.

display protocol, wherein the remote daesktop drawing command is based on
an image of a remote deskiop of the remote machine
(2204-8)

code for causing one or more processors 1o translate the remote desktop
drawing command into a display image and drawing coordinates for the
display image
{2206-8)

sode for causing one or more processors o place the drawing coordinates
into an HTTP response header “
{2208-8)

in response to at least one of the drawing requests, code for causing one or
more processors 1o facilitate providing the display image and the drawing
coordinates together to the web browser in a single HTTP response, for
drawing the display image of the remote desktop at the web browser,
wherein the single HTTP response comprises the HTTP response header
{2210-B)

FIG. 22B

U.S. Patent Jan. 26, 2016 Sheet 47 of 50 US 9,244,912 B1

2200-C

module for receiving drawing requests from the web browser at the client
device <« >
{2202-C

modale for receiving a remote deskiop drawing conmmand from the remote
machine using a remote desidop display protocol, wherein the remote
desktop drawing command is based on an image of aremote desktop of the < »
remote machine
{2204-C)

module for translating the remote desktop drawing command into a display
image and drawing coordinates for the display irange «—>
{2206-C3

module for placing the drawing coordinates into an HTTP response header

{2208-C) C

module for, in response to at least one of the drawing requests, facilitating
providing the display image and the drawing coordinates together to the web
browser in a single HTTP response, for drawing the display image of the N
remote desktop at the web browser, wherein the single HTTP response
coraprises the HTTP respouse beader
221080
N

FIG. 22C

U.S. Patent Jan. 26, 2016 Sheet 48 of 50 US 9,244,912 B1

2300-A

R

recetving, at the wrapper, an input request from the web browser utilizing a

requesi-response protocol, wherein the request-reaponse protocol is a pull
protocot
(2302-A)

'

translating, at the wrapper, the input request into an input command

compatible with a remote desktop display protocol to be stilized by a remote
deskiop client at the web server for facilitating communication with the
remote deskiop server at the remote machine, wherein the remote desktop
display protocol is a push protocol
{2304-A)

l

providing the input comamand to a remote deskiop client at the web server, to
facilitate providing the input command to the remote desktop server uiihizing
the remote deskiop display protocol
(2306-A)

l

recetving, at the wrapper, 3 remote desktop drawing command from the
remate deskiop server in response to the inpat commmand, wherein the remote
desktop drawing coromand 1s based on an image of a romote deskiop of the
remote machine
(2308-A)

.

translating, at the wrapper, the remote desktop drawing command into a
graphics drawing comynand compatible with the web server io allow the web
server o facilitate providing a web browser drawing update to the web
browser, wherein the web browser comprises a windows web browser and
the web browser drawing update is compatible with the windows web
browser
(2310-A)

FIG. 23A

U.S. Patent Jan. 26, 2016 Sheet 49 of 50 US 9,244,912 B1

code for causing one or mors processors to receive, at the wrapper, an input

request from the web browser utilizing a reguest-response prowcol, wherein

A4

the request-response protocol 18 a pull protbcol
{2302-B)

code for causing one or more processors to translate, at the wrapper, the
input request into an input command compatible with & remote desktop
display protocol to be utilized by a remote deskiop client ai the web server
for facilitating comununication with the remote deskiop server st the remote
machine, wherein the remote deskiop display protocol 1s a push protocol
{2304-B)

code for causing one of Mmore processors to provide the input command to &
reyaote desktop client at the web server, to facilitate providing the inpwt
cornraand to the remote deskitop server uilizing the remote desktop display
protecol
{2306-B)

code for causing one of MEre Processors 1o receive, al the wrapper, a remote
desktop drawing command from the remote desktop server in response o
the input command, wherein the remote desktop drawing command is based >
on an image of a remote desktop of the remote machine
{2308-B)

cods for cansing one 0t more proccssors o translate, at the wrapper, the
remote deskiop deawing comumand into a graphics drawing coromand
cornpaiible with the web server to allow the web server to faciliiate
providing a web browser drawing update to the web browser, wherein the <>
weh browser comprises a windows web browser and the web browser
drawing update is compatible with the windows web browser
{2310-8)

FIG. 23B

U.S. Patent Jan. 26, 2016 Sheet 50 of 50 US 9,244,912 B1

2300

Meadule for receiving an input reguest from the web browser utilizing a
regquesi-response protocol, wherein the request-response protocod is a puli « .
protocol

(2302-0)

Module for iranslating the input request into an input commmand compatible
with a remote deskiop display protoco! o be utihized by a reroote deskiop
client at the web server for facilitating communication with the remote
desktop server at the remote machine, wherein the remote deskiop dispiay
protocol is a push protocol
{2304-C)

Module for providing the input command to a remote deskiop client at the
web server, 1o facilifate providing the npw command to the remote deskiop B
server utilizing the remote desktop display protocol

(23060

receiving a remote deskiop drawing command from the remote deskiop
sefver in response (o the twpot corumand, wherein the remote deskiop
drawing command is based on an image of a remote desktop of the remote
machine
{2308-C)

Module for transiating the remote deskiop drawing command into a graphics
deawing comruand compatible with the web server 1o allow the web server
to facilitate providing & web browser drawing update to the web browser,

. . P >
wherein the web browser comprises a windows web browser and the web
browser drawing update is compatible with the windows web browser
(2310-C)

FIG. 23C

US 9,244,912 B1

1
METHODS AND SYSTEMS FOR
FACILITATING A REMOTE DESKTOP
REDRAWING SESSION UTILIZING HTML

CROSS-REFERENCES TO RELATED
APPLICATIONS

The present application claims the benefit of priority from
U.S. Provisional Patent Application Ser. No. 61/669,639,
entitled, “WEB SERVER FOR REMOTE DESKTOP DIS-
PLAY PROTOCOL,” filed on Jul. 9, 2012. The present appli-
cation is also a continuation-in-part of U.S. patent application
Ser. No. 12/965,820 entitled “METHODS AND SYSTEMS
FOR CONDUCTING A REMOTE DESKTOP SESSION
VIA HTML THAT SUPPORTS A 2D CANVAS AND
DYNAMIC DRAWING,” filed on Dec. 10, 2010. All of the
foregoing applications are hereby incorporated by reference
in their entirety for all purposes.

FIELD

The subject technology relates in general to communica-
tions and processing, and for example to, methods and sys-
tems for facilitating accessing and/or controlling a remote
desktop of a remote machine in real time by a web browser of
a client device via HTTP.

BACKGROUND

Traditional implementations of remote desktop protocols
enable a remote user to access his or her desktop or applica-
tions from a client device over a LAN or WAN network
topology to a server.

The traditional approach is for a software infrastructure
vendor to support a specific public or proprietary remote
desktop display protocol, which is native or installed on a
server. To access the server using a remote desktop protocol,
a client typically needs to have a protocol-specific software
application that executes on the user’s specific operating sys-
tem and platform or plug-in for a specific browser.

Conventional approaches are thus cumbersome to users.
Accordingly, there is a need for systems and methods that
facilitate user interaction with an application running on a
server from a client device and provide an improved experi-
ence for users at the client device.

SUMMARY

Aspects of the present disclosure may provide utilizing a
server that may provide one or more web browsers’ access to
one or more remote machines through a remote desktop cli-
ent. A server may include a module or functionality, e.g.,
machine-readable instructions, to receive requests from a
web browser. A sever may include a module or functionality,
e.g., machine-readable instructions, to translate user input
requests received (as HTTP requests) from a web browser
into corresponding input calls in a protocol/language com-
patible with one or more remote desktop clients for accessing
one or more remote machines. In one aspect, a server can
receive information/data from, e.g., drawing commands,
from one or more remote machines via the one or more
remote desktop clients and translate the information/data into
a protocol/language compatible with the associated web
browser(s). A server can include storage/memory functional-
ity for holding an image, e.g., a Java or memory bitmap,
which can be modified in response to drawing commands
received from the remote desktop server. A server may

10

15

20

25

30

35

40

45

50

55

60

65

2

receive from the remote desktop server and store coordinates
corresponding to the respective drawing commands. In cer-
tain aspects, a server may comprise a web server, e.g., a
windows web server.

In some applications, a server may facilitate/accelerate
rendering an image of the related remote desktop(s) at the
related web browser by creating and modifying an image of
the portion of the remote desktop that is affected by the user’s
input at the user device.

Aspects of the present disclosure may provide a web server
with asynchronous request handling functionality to handle
requests from a web browser.

Aspects of the present disclosure may provide a server with
long polling functionality to handle requests from a web
browser.

Aspects of the present disclosure may include or provide a
web browser having a canvas or 2D rendering functionality.

It is understood that other configurations of the subject
technology will become readily apparent to those skilled in
the art from the following detailed description, wherein vari-
ous configurations of the subject technology are shown and
described by way of illustration. As will be realized, the
subject technology is capable of other and different configu-
rations and its several details are capable of modification in
various other respects, all without departing from the scope of
the subject technology. Accordingly, the drawings and
detailed description are to be regarded as illustrative in nature
and not as restrictive.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates an example of a display on a client device
during a remote access session with a remote machine via a
server.

FIG. 2A is a diagram of an example of one or more client
devices each with a web browser connected to one or more
remote machines via multiple networks and a server.

FIG. 2B is a diagram of an example of one or more client
devices each with a web browser connected to one or more
remote machines through a network and a server.

FIG. 3A is a conceptual block diagram of an example of a
transcoding server according to certain aspects of the present
disclosure as used in conjunction with a web browser and a
remote machine.

FIG. 3B is a conceptual block diagram of an example of a
transcoding server according to certain alternate aspects of
the present disclosure as used in conjunction with a web
browser and a remote machine.

FIG. 4A is a conceptual block diagram of an example of a
transcoding server.

FIG. 4B is a conceptual block diagram of an example of an
alternate transcoding server.

FIG. 4C is a conceptual block diagram of a remote desktop
of a remote machine.

FIG. 5 is a conceptual block diagram of an example of a
web browser as used in conjunction with a transcoding server
and a remote machine.

FIG. 6 is a conceptual block diagram of an example of a
transcoding server according to certain aspects of the present
disclosure.

FIG. 7 is an example of a sequence diagram of the interac-
tions between a transcoding server as used in conjunction
with a web browser and a remote machine.

FIG. 8A is a conceptual block diagram of an example of a
web server according to certain aspects of the present disclo-
sure as used in conjunction with a client device and a remote
machine.

US 9,244,912 B1

3

FIG. 8B is a conceptual block diagram of an example of a
web server, a browser and a remote machine.

FIG. 9 is a conceptual block diagram of an example of a
web server.

FIG. 10 is a conceptual block diagram of an example of a
web browser as used in conjunction with a web server and a
remote machine.

FIG. 11 is a conceptual block diagram of an example of a
remote desktop client wrapper.

FIG. 12 is a block diagram that illustrates an exemplary
computing system.

FIG. 13A illustrates a block diagram representing an
example of a method of accessing and controlling a remote
desktop from a user device.

FIG. 13B illustrates a continuation of the FIG. 13A.

FIG. 14A is a block diagram representing an example of
method of facilitating accessing and controlling a remote
desktop of a remote machine in real time by a web browser of
a client device via a hypertext transfer protocol (HTTP) uti-
lizing a transcoding server.

FIG. 14B is a block diagram representing code of an
example of a machine-readable storage medium encoded
with instructions executable by a processing system to per-
form a method of facilitating accessing and controlling a
remote desktop of a remote machine in real time by a web
browser of a client device via a hypertext transfer protocol
(HTTP) utilizing a transcoding server.

FIG. 14C is a block diagram module of an example of an
apparatus for facilitating accessing and controlling a remote
desktop of a remote machine in real time by a web browser of
a client device via a hypertext transfer protocol (HTTP) uti-
lizing a transcoding server.

FIG. 15A is a block diagram representing an example of a
method of facilitating accessing and controlling a remote
desktop of a remote machine in real time by a web browser of
a client device via a hypertext transfer protocol (HTTP) uti-
lizing a transcoding server.

FIG. 15B is a block diagram representing code of an
example of a machine-readable storage medium encoded
with instructions executable by a processing system to per-
form a method of facilitating accessing and controlling a
remote desktop of a remote machine in real time by a web
browser of a client device via a hypertext transfer protocol
(HTTP) utilizing a transcoding server.

FIG. 15C is a block diagram module of an example of an
apparatus for facilitating accessing and controlling a remote
desktop of a remote machine in real time by a web browser of
a client device via a hypertext transfer protocol (HTTP) uti-
lizing a transcoding server.

FIG. 16A is a block diagram representing an example of a
method of facilitating conducting a remote desktop session
between a web browser of a client device and a remote
machine via a transcoding server in real time and utilizing
hypertext markup language that supports a two-dimensional
(2D) canvas and dynamic drawing.

FIG. 16B is a block diagram representing code of an
example of a machine-readable storage medium encoded
with instructions executable by a processing system to per-
form a method of facilitating conducting a remote desktop
session between a web browser of a client device and aremote
machine via a transcoding server in real time and utilizing
hypertext markup language that supports a two-dimensional
(2D) canvas and dynamic drawing.

FIG. 16C is a block diagram of module of an example of an
apparatus for facilitating conducting a remote desktop ses-
sion between a web browser of a client device and a remote
machine via a transcoding server in real time and utilizing

20

25

40

45

55

4

hypertext markup language that supports a two-dimensional
(2D) canvas and dynamic drawing.

FIG. 17A is a block diagram representing an example of a
method of facilitating a remote desktop session between a
web browser of a client device and a remote machine through
a transcoding server, utilizing hypertext transfer protocol
(HTTP) headers of HTTP for remote desktop session draw-
ing.

FIG. 17B is a block diagram representing code of an
example of a machine-readable storage medium encoded
with instructions executable by a processing system to per-
form a method of facilitating a remote desktop session
between a web browser of a client device and a remote
machine through a transcoding server, utilizing hypertext
transfer protocol (HTTP) headers of HTTP for remote desk-
top session drawing.

FIG. 17C is ablock diagram of module of an example of an
apparatus for facilitating a remote desktop session between a
web browser of a client device and a remote machine through
a transcoding server, utilizing hypertext transfer protocol
(HTTP) headers of HTTP for remote desktop session draw-
ing.

FIG. 18A is a block diagram representing an example of a
method of facilitating a remote desktop session between a
web browser of a client device and a remote desktop server at
a remote machine through a transcoding server, utilizing an
adapter at the transcoding server.

FIG. 18B is a block diagram representing code of an
example of a machine-readable storage medium encoded
with instructions executable by a processing system to per-
form a method of facilitating a remote desktop session
between a web browser of a client device and a remote desk-
top server at a remote machine through a transcoding server,
utilizing an adapter at the transcoding server.

FIG. 18C is a block diagram of module of an example of an
apparatus for facilitating a remote desktop session between a
web browser of a client device and a remote desktop server at
a remote machine through a transcoding server, utilizing an
adapter at the transcoding server.

FIG. 19A is a block diagram representing code of an
example of a machine-readable storage medium encoded
with instructions executable by a processing system to per-
form a method of facilitating accessing and controlling a
remote desktop of a remote machine in real time from a web
browser of a client device via a hypertext transfer protocol
(HTTP) handler and a remote desktop client adapter for a
transcoding server.

FIGS. 19B-19C are block diagrams representing an
example of a method of facilitating accessing and controlling
aremote desktop of a remote machine in real time from a web
browser of a client device via a hypertext transfer protocol
(HTTP) handler and a remote desktop client adapter for a
transcoding server; FIG. 19C is a continuation of FIG. 19B.

FIGS. 19D-19E are block diagrams of modules of an
example of an apparatus for facilitating accessing and con-
trolling a remote desktop of a remote machine in real time
from a web browser of a client device via a hypertext transfer
protocol (HT'TP) handler and a remote desktop client adapter
for a transcoding server; FIG. 19E is a continuation of FIG.
19D.

FIG. 20A is a block diagram of an example of a method of
facilitating accessing and controlling a remote desktop of a
remote machine in real time by a web browser of a client
device via a hypertext transfer protocol (HTTP).

US 9,244,912 B1

5

FIG. 20B is a block diagram of an example of a machine-
readable storage medium comprising stored instructions
executable by one or more processors to perform one or more
operations.

FIG. 20C is a block diagram of an example of an apparatus
for facilitating accessing and controlling a remote desktop of
a remote machine in real time by a web browser of a client
device via a hypertext transfer protocol (HTTP).

FIG. 21A is a block diagram of an example of a method of
facilitating conducting a remote desktop session between a
web browser of a client device and a remote machine via a
web server in real time.

FIG. 21B is a block diagram of an example of a machine-
readable storage medium comprising stored instructions
executable by one or more processors to perform one or more
operations.

FIG. 21C is a block diagram of an example of an apparatus
for facilitating conducting a remote desktop session between
a web browser of a client device and a remote machine via a
web server in real time.

FIG. 22A is a block diagram of an example of a method of
facilitating a remote desktop session, utilizing hypertext
transfer protocol (HTTP) headers for remote desktop session
drawing.

FIG. 22B is a block diagram of an example of a machine-
readable storage medium comprising stored instructions
executable by one or more processors to perform one or more
operations.

FIG. 22C is a block diagram of an example of an apparatus
for facilitating a remote desktop session, utilizing hypertext
transfer protocol (HTTP) headers.

FIG. 23 A is a block diagram of an example of a method of
facilitating a remote desktop session between a web browser
and a remote desktop server.

FIG. 23B is a block diagram of an example of a machine-
readable storage medium comprising stored instructions
executable by one or more processors to perform one or more
operations.

FIG. 23C is a block diagram of an example of an apparatus
for facilitating a remote desktop session for a web browser
and a remote desktop server.

While certain embodiments are depicted in the drawings,
one skilled in the art will appreciate that the embodiments
depicted are illustrative and that variations of those shown, as
well as other embodiments described herein, may be envi-
sioned and practiced within the scope of the present disclo-
sure.

DETAILED DESCRIPTION

The detailed description set forth below is intended as a
description of various configurations of the subject technol-
ogy and is not intended to represent the only configurations in
which the subject technology may be practiced. The
appended drawings are incorporated herein and constitute a
part of the detailed description. The detailed description
includes specific details for the purpose of providing a thor-
ough understanding of the subject technology. However, it
will be apparent to those skilled in the art that the subject
technology may be practiced without these specific details. In
some instances, well-known structures and components are
shown in block diagram form in order to avoid obscuring the
concepts of the subject technology. Like components are
labeled with identical element numbers for ease of under-
standing.

Prior approaches using hypertext markup language
(HTML) have required the use of browser specific plug-ins as

10

15

20

25

30

35

40

45

50

55

60

65

6

a method to create a better user experience by accelerating
video and audio for example. Browser plug-ins do notachieve
HTML browser independence across the competing infra-
structure vendors.

Infrastructure vendors are competing heavily in the “pro-
prietary” remote desktop protocols and are focused on mod-
est improvements over time to improve the user experience.
The user experience while using a remote desktop protocol is
a primary differentiator between the infrastructure vendors.
There are, however, no known efforts to enable the user and
customer to have a single unified method to have remote
access to their home, work or mobile Windows, Mac or Linux
environments.

In some aspects, embodiments of the subject technology
can eliminate or reduce the need for the installation of “pro-
prietary” protocols on a user’s device (or a client device) for
accessing a remote machine during a remote desktop session.
A remote machine, or remotely accessed machine, may
include a remote desktop server. By enabling the user to use
a single method to access their remote desktops with an “open
standard” technology like HTMLS, the requirements placed
onauser’s device, e.g., asmart phone, can be greatly reduced.

In some aspects, embodiments of the subject technology
can reduce or eliminate the need for installation of client
software and/or a browser plug-in on the user’s client device.

In some aspects, embodiments of the subject technology
can achieve a robust user experience that one would expect
from a local executing application on a personal computing
desktop.

In some aspects, embodiments of the subject technology
can advantageously utilize 2D rendering capability of suit-
able web browsers and replace proprietary rendering proto-
cols with the 2D drawing capabilities of a browser running on
the user’s client device.

In some aspects, embodiments of the subject technology
can allow a user to easily access one or multiple open remote
desktops across multiple servers and maintain their exact
state from information stored in real-time on an associated
web server having protocol translation functionality that can
function as a common interface between push-type protocol
employed by most remote desktop protocols and the pull-type
protocol employed by HTTP, also referred to herein as a
“transcoding server,” which the user may access via a web
browser having 2D rendering capability. Doing so can allow
the user to render a remote display of a currently open session
in a few seconds. Thus, as the user switches from client device
to client device, the exact state of a particular remote desktop
is preserved and is re-rendered based on the capabilities of
each display device. Effectively the user’s multiple desktops
can be configured to be always on and ready to be displayed
on demand. The user’s remote desktops can be configured to
be accessed at any time and from any location.

Prior to the subject technology as described herein,
because HTTP (a pull-type protocol) and most remote desk-
top display protocols (push-type protocols) are incompatible,
it has generally been recognized by those skilled in the art that
proprietary software and/or downloadable plug-ins were nec-
essary for a web browser in order to have a remote desktop
session using an HTTP on one end and a remote desktop
display protocol on the other end.

In some aspects, embodiments of the subject technology
can enable a user of any endpoint device with a web browser
having 2D rendering capabilities, e.g., an HTMLS5 browser, to
display one or more remote desktop sessions in a single or
multiple browser windows. Embodiments of the present dis-
closure can accordingly eliminate the need for installation on
a client device of proprietary or open source client applica-

US 9,244,912 B1

7

tions for remote desktop access. Embodiments of the present
disclosure can establish and maintain simultaneous remote
desktop connections to a single or multiple Windows, Mac
OS, or Linux servers and enable all remote sessions to be
displayed and interacted independently within the user’s
browser application. Embodiments of the present disclosure
can be rendered in real-time and be displayed as a web page
on the remote client, e.g., auser device such as a smart phone.
All user mouse, touch and keyboard input may be captured
within the browser window and converted into the input for-
mat needed by the remote desktop machine, which may uti-
lize common desktop protocols, e.g., independent computing
architecture (ICA) by Citrix Systems, remote desktop proto-
col (RDP) by Microsoft, and PC-over-1P (PColP) by Taradici,
etc. Embodiments ofthe present disclosure can maintain open
connections to the host servers at all times allowing single or
multiple endpoint devices to be interactively connected and
disconnected to the remote sessions instantly. Remote ses-
sions never need to be disconnected from the servers as
embodiments of the present disclosure can maintain active
connections to the desktop. Active sessions can beresized and
adjusted for best display and user experience to utilize the full
capability of the user’s access device.

In some aspects, embodiments of the subject technology
can reduce or eliminate the requirement for a local client
application, e.g., a web browser, to support a vendor specific
remote desktop protocol. Embodiments of the present disclo-
sure can allow a browser with 2D rendering capability to run
on any hardware, any operating system and any form-factor
for the user to access her or his remote desktop or applica-
tions. A user can simply point the browser, e.g., an HTMLS
compatible browser such as Google Chrome, to a respective
predetermined uniform resource locator (URL) for one or
more remote machines configured as remote desktop appli-
cation servers. The browser can access a transcoding server
that can translate or transcode between the protocol used for
the browser and the protocol used for the remote machine(s).
The transcoding server can be public/private cloud-based,
and the access to the transcoding server can utilize HTTPS
protocol. The transcoding server can authenticate the connec-
tion between the remote machine and a remote desktop client,
render the desktop of the remote machine(s) in real-time, and
transmit that rendering to the browser via HT'TP so that the
browser can display the rendering in HTMLS canvas. Accord-
ingly, embodiments of the present disclosure can function as,
or provide, a virtual desktop and application server that con-
nects to one or multiple remote desktop servers, e.g., Citrix
XenDesktop with ICA, Microsoft Windows Client and Server
with RDP, and VMware View with PColP, etc.

Prior to HTMLS supporting canvas 2D real-time drawing
primitives, HTML alone was not seen as a practical rendering
technology due to the static nature of the rendered objects. As
used according to the present disclosure, HTMLS5, and similar
browser languages, can enable a new user robust experience
due to the ability of rendering in 2D, 3D and multimedia
video/audio objects on the client platform; HTMLS5 can also,
in some cases, utilize hardware acceleration for such render-
ing. Aspects of the subject technology can facilitate enhanced
user experience for remote desktop sessions by providing
platform-independent techniques that allow real time access
to remote machines and do not require the client device to
have proprietary software or plug-ins. Moreover, the remote
machines are not required to have HTTP or HTML compat-
ibility for the remote desktop sessions.

As described herein, aspects of the subject technology can
reduce or minimize traffic between a browser and a transcod-
ing server according the present disclosure. The reduction in

10

15

20

25

30

35

40

45

50

55

60

65

8

traffic can be facilitated by various aspects of the subject
technology including, but not limited to, implementation of
long polling for drawing requests received from a web
browser, providing to a web browser only image portions
from a remote desktop that have changed and need to be
updated (rather than the image of the entire remote desktop),
and placing coordinates for updated image portion(s) into a
header of a single HTTP transmission response. The reduc-
tion of traffic to and from a browser can facilitate a remote
desktop session that provides a real time user experience, e.g.,
a user experience with few if any perceivable delays in the
round trip time (delay) for user inputs to travel from a client
device, to the remote machine, and a corresponding update of
the remote desktop showing up on the client device. In exem-
plary embodiments, such delay may be below, e.g., 100 mil-
liseconds, so that most users will not perceive any delay at all.

FIG. 1 shows an example of a display ata client device with
a large screen during a remote desktop session with a remote
machine via a server. The display 100 includes the local
desktop 110 of the client device, a web browser window 120
that in turn includes a remote view window 130 showing an
image 132 of a remote desktop of the remote machine, which
image includes, in this example, folder and shortcut icons in
addition to a remote web browser application 140 running on
the remote machine. The remote view window 130 may have
aheight H and a width W, and remote view window 130 may
be resized (e.g., to be made larger to cover the entire local
desktop 110 or be made smaller). The image 132 of the
remote desktop 130 and remote application 140 are based on
display output data of the remote desktop 130 and remote
application 140 from the remote machine transmitted to the
client device via the server.

As was noted previously, aspects of the present disclosure
can include or utilize a HTMLS compatible web browser
having a 2D canvas, e.g., 530 in FIG. 5. The HTMLS5 speci-
fication provides for a 2D canvas, which allows for dynamic,
real-time, scriptable rendering of 2D shapes and bitmap
images. In one aspect, being scriptable can mean or include
reference to utilizing JavaScript for rendering a 2D image.
The canvas consists of a drawable region defined in HTML
code with height and width attributes. JavaScript code may
access the area through a full set of drawing functions similar
to other common 2D APIs, thus allowing for dynamically
generated graphics.

As shown in FIGS. 2A-2B, an overall architecture of exem-
plary embodiments of the present disclosure may contain
three parts: a client device (or a user’s device) containing a
browser, e.g., an HTMLS compatible browser; a server, e.g.,
a Java web sever, that is configured to function as a transcod-
ing server, translating between different protocols; and a
remote machine to which the client device is connecting. As
shown and described for FIGS. 3A-3B, a transcoding server
may include three main sections: a remote desktop client
wrapper or adapter, a drawing commands queue, and a web
application container. The web application container can
include various elements or components, e.g., a hypertext
transfer protocol (HT'TP) handler, a long polling handler, and
a drawing requests queue, as shown and described with ref-
erence to FIGS. 2A-11. In an alternate embodiment, a draw-
ing commands queue may be a part of a web application
container.

FIG. 2A is a diagram of an example of client devices such
as those having a web browser connected to multiple remote
machines through multiple networks and a server. The system
200 may include one or more remote client devices 202 in
communication with one or more remote machines 204 via a
server computing device 208 (server) via one or more net-

US 9,244,912 B1

9

works 206. In one aspect, the server 208 is configured to allow
remote sessions (e.g., remote desktop sessions) wherein users
at client devices 202 can access applications and files on one
or more remote machines 204 by logging onto the server 208
from a client device 202 over one or more networks 206.

FIG.2Bis adiagram of an alternate example of one or more
client devices connected to one or more remote machines
through a network and a server. As shown in the drawing, the
server 208 associated with the remote machines 204 can be
connected to network 206, for example, in a hub and spoke
configuration.

By way of illustration and not limitation, in one aspect of
the disclosure, stated from a perspective of a remote machine
side (treating a remote machine 204 as a local device and
treating a client device 202 as aremote device), an application
is executed (or runs) at a local device 204. While a client
device 202 may receive and display a view of the application
on a display local to the client device 202, the client device
202 does not execute (or run) the application at the client
device 202. Stated in another way from a perspective of the
client side (treating a remote machine 204 as a remote device
and treating a client device 202 as a local device), a remote
application is executed (or runs) at a remote machine 204, and
while a client device 202 may receive and display a view of
the remote application, the client device 202 does not execute
(or run) the remote application locally at the client device.

By way of illustration and not limitation, a client device
202 can represent a computer, a mobile phone, a laptop com-
puter, a thin client device, a personal digital assistant (PDA),
a portable computing device, or a suitable device with a
processor. In one example, a client device 202 may be a
smartphone (e.g., iPhone, Android phone, Blackberry, etc.).
In certain configurations, a client device 202 can represent an
audio player, a game console, a camera, a camcorder, an audio
device, a video device, a multimedia device, or a device
capable of supporting a connection to a remote server. In a
preferred example, a client device 202 is mobile. In another
example, a client device 202 can be stationary. According to
one aspect of the disclosure, a client device 202 may be a
device having at least a processor and memory, where the
total amount of memory of'the client device 202 could be less
than the total amount of memory in a remote machine 204 or
a server 208. In one example, a client device 202 does not
have a hard disk. In one aspect, a client device 202 has a
display smaller than a display supported by a remote machine
204 or a server 208. In one aspect, a client device may include
one or more client devices.

In one preferred aspect, a server 208 or a remote machine
204 may represent a computer. In another aspect, a server 208
or a remote machine 204 may represent a laptop computer, a
computing device, a virtual machine (e.g., VMware® Virtual
Machine), a desktop session (e.g., Microsoft Terminal
Server), a published application (e.g., Microsoft Terminal
Server) or a suitable device with a processor. In one preferred
example, a server 208 or a remote machine 204 is stationary.
In another aspect, a server 208 or a remote machine 204 can
be mobile. In certain configurations, a server 208 or a remote
machine 204 may be any device that can represent a client
device. In one aspect, a server 208 may include one or more
servers.

In one example, a first device is remote to a second device
when the first device is not directly connected to the second
device. In one example, a first remote device may be con-
nected to a second device over a communication network
such as a Local Area Network (LAN), a Wide Area Network
(WAN), and/or other network.

40

45

50

10

When a client device 202, a server 208 and a remote
machine 204 are remote with respect to one another, a client
device 202 may connect to a server 208 over a network 206,
and a remote machine may connect to a server 208 over a
network 206 via a network connection, for example, a modem
connection, a LAN connection including the Ethernet or a
broadband WAN connection including DSL, Cable, T1, T3,
Fiber Optics, Wi-Fi, or a mobile network connection includ-
ing GSM, GPRS, 3G, WiMax or other network connection. A
network 206 can be a LAN network, a WAN network, a
wireless network, the Internet, an intranet or other network. A
network 206 may include one or more routers for routing data
between client devices and/or servers. A remote device (e.g.,
client device, server) on a network may be addressed by a
corresponding network address, such as, but not limited to, an
Internet protocol (IP) address, an Internet name, a Windows
Internet name service (WINS) name, a domain name or other
system name. These illustrate some examples as to how one
device may be remote to another device. However, the subject
technology is not limited to these examples.

According to certain aspects of the present disclosure, the
terms “server” and “remote server” are generally used syn-
onymously in relation to a client device, and the word
“remote” may indicate that a server is in communication with
other device(s), for example, over a network connection(s).

According to certain aspects of the present disclosure, the
terms “client device” and “remote client device” are generally
used synonymously in relation to a server and/or a remote
machine, and the word “remote” may indicate that a client
device is in communication with a server(s) and/or a remote
machine(s), for example, over a network connection(s).

In one aspect of the disclosure, a “client device” may be
sometimes referred to as a client, a user device, a user’s device
orvice versa. Similarly, a “server” may be sometimes referred
to as a server device or vice versa. A server is sometimes
referred to as a web server. Exemplary embodiments of the
present disclosure include use of web servers with transcod-
ing functionality, e.g., transcoding servers.

In one aspect, the terms “local” and “remote” are relative
terms, and a client device may be referred to as a local client
device or a remote client device, depending on whether a
client device is described from a client side or from a server
side or a remote machine’s side, respectively. A remote
machine may be referred to as a local machine or a remote
machine, depending on whether a remote machine is
described from the remote machine’s side or from a client or
server side. Similarly, a server may be referred to as a local
server or a remote server, depending on whether a server is
described from a server side or from a client side or a remote
machine’s side, respectively. Furthermore, an application
running on a remote machine may be referred to as a local
application, if described from a remote machine’s side, and
may be referred to as a remote application, if described from
a client side or a server side.

In one aspect, devices placed on a client side (e.g., devices
connected directly to a client device(s) or to one another using
wires or a short range wireless connection (e.g., Bluetooth))
may be referred to as local devices with respect to a client
device and remote devices with respect to a server. Similarly,
devices placed on a server side (e.g., devices connected
directly to a server(s) or to one another using wires or a short
range wireless connection (e.g., Bluetooth)) may be referred
to as local devices with respect to a server and remote devices
with respect to a client device.

FIG. 3A is an example of a conceptual block diagram of a
system 300A including a transcoding server 330 according to
certain aspects of the present disclosure as used in conjunc-

US 9,244,912 B1

11

tion with a web browser 312 and a remote machine 320. A
client device 310, such as a smart phone or laptop computer,
is depicted along with a web browser having (i) a canvas 316,
e.g., the web browser 312 supports a 2D rendering canvas,
and (ii) a script client 314, e.g., a JavaScript client in a pre-
ferred embodiment.

Transcoding server 330 can include three main functional
blocks or modules: a web application container 340, a remote
desktop client adapter 350, and a drawing commands queue
360 that includes a shared memory. The web application
container can include an HTTP handler 344 for handling
HTTP requests from the web browser and HTTP responses to
the web browser. In some embodiments, the web application
container 340 may also include a long polling handler module
342, as shown. The remote desktop client adapter 350 can be
configured to interface with a remote desktop client 352, e.g.,
from a third-party vendor, for communication with remote
machine 320, which may include a remote desktop server
322, as shown. Embodiments of a transcoding server 330 can
be configured to provide an application framework for host-
ing one or more web applications and/or function as a Java
web application container that can run Servlets. In some
aspects, a remote desktop client adapter 350 may be referred
to as a remote desktop client common interface.

The remote desktop client 352 may function to communi-
cate with the remote desktop server 322 of the remote
machine 320 using a remote desktop display protocol. The
remote desktop client sends a user’s input to the remote
machine, and receives drawing data from the remote machine
via its specific remote desktop display protocol.

In one aspect, a remote desktop server 322 may refer to a
software installed on a remote machine 320, and a remote
desktop server 322 may allow applications, particularly those
including graphical applications, which run on the remote
machine 320, to be displayed at a machine that is separate and
distinct from the remote machine 320 (e.g., client devices
310). Remote desktop server 322 may allow drawing com-
mands representing an image of a desktop of the remote
machine to be transmitted to the separate machine (e.g.,
transcoding server 330). In one aspect, remote desktop client
352 may refer to software installed on the machine that is
separate and distinct from the remote machine 320 (e.g.,
transcoding server 330). Remote desktop client 352 may send
requests to remote desktop server 322 via a remote desktop
display protocol and in response receive the drawing com-
mands representing the image of the desktop of the remote
machine via the remote desktop display protocol.

In operation, the web application container 340 can func-
tion to receive and respond to the JavaScript client’s HT'TP
requests. In one implementation, a Servlet container can be
used but the same result can be achieved using any similar
web application framework, such as Restlet, for example. The
remote desktop client adapter 350 may provide a common
interface between any remote desktop client and the drawing
commands queue/the web application container.

The remote desktop client adapter 350 may receive a user’s
input information, data, or commands (e.g., mouse, keyboard,
and touch events) from HTTP handler 344 and translate the
input information/commands into respective remote desktop
input calls, which are sometimes referred to as remote desk-
top input commands. The remote desktop client adapter 350
may also translate the drawing commands ofthe remote desk-
top, e.g., GDI drawing commands, received from remote
desktop server 322 (viaa remote desktop display protocol and
remote desktop client 352) into Java graphics application
programming interface (API) commands. Java graphics API
commands in themselves are not suitable for the web

10

15

20

25

30

40

45

50

55

60

12

browser; but they are an intermediary step towards achieving
browser compatibility. The remote desktop client adapter
may then execute those Java graphics API commands, i.e.,
drawing into an off-screen Java bitmap, which can be stored
in the drawing commands queue 360. In an alternative
embodiment, the drawing commands queue (e.g., 360 of FIG.
3A or 440 of FIG. 4A or 4B) may receive the Java graphics
API commands from the remote desktop client adapter and
execute the Java graphics APl commands to draw into an
off-screen Java bitmap. The HTTP handler (e.g., 344 of FIG.
3A or 422 of FIG. 4A) or image conversion module (e.g., 346
of FIG. 3B or 428 of F1G. 4B) can create an image, such as a
joint photographic experts group (JPEG) image, or a portable
network graphics (PNG) image, or a bit image file (BMP)
image or any other image file in an image format suitable for
web browsers, from the Java off-screen bitmap; and the
resulting image is suitable for the browser 312. In one aspect,
a JPEG image may be referred to as a JPEG image file, and a
PNG image may be referred to as a PNG image file, and BMP
image may be referred to as a BMP image file. In one aspect,
as the image (e.g., a JPEG or PNG image) is created in real
time, when it is created, it is simply sent to the web browser
without being stored at the transcoding server.

In one aspect, the drawing commands queue 360 can serve
two purposes: holding or storing the off-screen Java bitmap
onto which drawing commands are executed; and, holding or
serving as a drawing coordinates pool, e.g., a queue of coor-
dinates for drawing commands. The drawing commands
queue 360 can, for example, store GDI drawing command
coordinates received from the remote desktop client adapter.
In the event there are new drawing coordinates in the queue,
the drawing commands queue 360 may send a notification to
long polling handler module 342 (e.g., can be sent so that any
pending request in the drawing requests queue can be served).
The drawing requests queue (e.g., 426 in FIG. 4A or 4B) can
function to store incoming long polling drawing requests
from the client and respond to them when there are pending
drawing commands from the drawing commands queue.

FIG. 3B is a conceptual block diagram of a system 300B
including a transcoding server 330 according to certain alter-
nate aspects of the present disclosure as used in conjunction
with a web browser and a remote machine. System 3008 is
similar to system 300A of FIG. 3A with similar reference
numbers, except that the remote desktop client 352 is shown
as a separate module/functional block relative to the remote
desktop client 350 adapter, and an image conversion module
346 is shown as a separate module/functional block relative to
HTTP handler 344.

FIG. 4A is a detailed conceptual block diagram of a
transcoding server 400A according to certain aspects of the
present disclosure. In one aspect, transcoding server 400A
may preferably be a Java transcoding server. Transcoding
server 400A may include a web application container 420
(e.g., aweb application container such as a Servlet container),
a remote desktop client adapter 430, and a drawing com-
mands queue 440. The remote desktop client adapter 430 can
be configured to interface with any suitable remote desktop
client 432 for communication with a remote machine (e.g.,
320 in FIG. 3A or 3B), which may be configured to include a
remote desktop server (e.g., 322 in FIG. 3A or 3B). 432. The
drawings commands queue 440 can function as memory or
storage that is accessible by both the web application con-
tainer 420 and the remote desktop client adapter 430. The web
application container 420 may include an HTTP handler 422
for handling HTTP requests from a web browser and sending
HTTP responses back to the client/web browser (e.g., 312 in
FIG. 3A or 3B). In one aspect, the HTTP handler 422 is a

US 9,244,912 B1

13

standard HTTP handler. The drawing commands queue 440
can serve two purposes: holding or storing an off-screen
image, e.g., Java bitmap 444, onto which drawing commands
are executed; and, serving as a drawing coordinates pool 442,
e.g., a queue of coordinates for drawing commands. The
coordinates can be those of regions or areas of an image of the
remote desktop that need to be redrawn at the client device to
reflect changes on the remote desktop. The areas or regions
are sometimes referred to as “dirty” regions, as indicated in
FIGS. 4A-4B.

In some embodiments, the web application container may
include a long polling handler module, which includes a long
polling handler 424 and a drawing requests queue 426. The
long polling handler 424 can operate with drawing requests
queue 426. The drawing requests queue 426 can function to
store incoming long polling drawing requests received from
the client (e.g., HTMLS5 compatible web browser such as web
browser 312 in FIG. 3A or 3B) via the long polling handler
424 and respond to them when there are pending drawing
commands from the drawing commands queue 440. In one
aspect, pending drawing commands may include coordinates
for the image in dirty coordinates pool 442 and/or an image
(e.g., Java bitmap 444) in the drawing commands queue 440.

In operation, the web application container 420 may
receive and respond to HTTP requests from a web browser on
a user device (e.g., 202 in FIG. 2A or 310 in FIG. 3A or 3B).
The web application container 420 may provide user input
requests to the remote desktop client adapter 430, which
provides a common interface between the web application
container 420 and the remote desktop client 432. The remote
desktop client adapter 430 may translate user input informa-
tion (e.g., mouse, keyboard, and touch events) into respective
remote desktop input calls for the remote desktop client 432.
The remote desktop client adapter 430 may translate the
drawing commands (e.g., GDI drawing commands) of an
image of a remote desktop received from a remote machine
(e.g., 204 in FIG. 2A or 2B or 320 in FIG. 3A or 3B) via a
remote desktop display protocol and the remote desktop cli-
ent 432, into Java graphics drawing commands.

After receiving and translating the drawing commands
from the remote desktop client 432, the remote desktop client
adapter 430 may draw into an off-screen Java bitmap stored in
the drawings commands queue 440 as shown. More specifi-
cally, the remote desktop client adapter 430 may provide as an
image the portion, also referred to as the “dirty region(s)” of
the remote desktop affected by the user’s input from the user
device. Along with the drawing commands, the remote desk-
top client adapter 430 may extract, from the drawing com-
mand(s), coordinates of the dirty region(s) from the remote
desktop client and provide the drawing coordinates to the
drawing commands queue 440 (e.g., dirty coordinates pool
442), as indicated. As explained later, the coordinates can be
placed into an HTTP header section (e.g., by HTTP handler
422) to send dirty region coordinates (e.g., as cookie), along
with an image, to a browser (e.g., 312 in FIG. 3A or 3B) for
display.

In the event there are new drawing coordinates in the draw-
ing commands queue 440 (e.g., in the dirty coordinates pool
442), drawing commands queue 440 may send a notification
to the drawing requests queue 426 so that any pending request
in the drawing requests queue 426 can be forwarded to the
HTTP handler 422 for serving. The HTTP handler 422 may
then reach to the drawing commands queue 440 (e.g., dirty
coordinates pool 442), and obtain the dirty coordinates from
the dirty coordinates pool 442. The HTTP handler 422 may
then place the dirty coordinates into an HTTP header section
(known as a cookie). In addition, according to those coordi-

10

15

20

25

30

40

45

50

55

60

65

14

nates, the HTTP handler 422 may obtain an image portion
from the Java off-screen bitmap 444. The HTTP handler 422
may then send the image (e.g., as a JPEG image or a PNG
image) as well as the coordinates, which are stored in an
HTTP response header section, to the web browser (e.g., 312
in FIG. 3A or 3B) for display at the user device’s display (e.g.,
313 in FIG. 3A or 3B). As a result, the transcoding server
400A can facilitate a remote desktop session between a user
device (e.g., 202 in FIG. 2A or 2B or 310 in FIG. 3A or 3B)
and a remote machine (e.g., 204 in FIG. 2A or 3B or 320 in
FIG. 3A or 3B) without the need for the user device to utilize
proprietary plug-ins or protocols.

In one aspect, an image (or an image file) and drawing
coordinates sent by a transcoding server to a web browser
may be considered as an example of web browser drawing
updates. In a preferred aspect, web browser drawing updates
are compatible with the web browser so that the web browser
can recognize the web browser drawing updates and process
them to display an image at the appropriate location on a
display. Web browser drawing updates may be implemented
with other types of drawing data and commands.

In one aspect, an HTTP protocol (the requests of which
may be handled with an HTTP handler and a long polling
handler) between a client device and a transcoding server is a
pull protocol, and a remote desktop display protocol utilized
between a transcoding server and a remote machine is a push
protocol.

Long polling is a modification of the traditional polling
technique and can allow emulation of an information push
from a server to a client. With long polling, the client requests
information from the server in a similar way to a normal poll.
In the event the server does not have any information avail-
able for the client, instead of sending an empty response, the
server holds the request and waits for some information to be
available. Once the information becomes available (or after a
suitable timeout), a complete response is sent to the client.
The client can then immediately re-request information from
the server, allowing the server to almost always have an
available waiting request that it can use to deliver data in
response to an event.

FIG. 4B is a conceptual block diagram of an alternate
transcoding server 400B according to certain aspects of the
present disclosure. Transcoding server 400B is similar to
transcoding server 400A of FIG. 4A with similar drawing
numbers, except a separate image conversion or generation
block 428 is shown. Block 428 may function to take the Java
bitmap 444 from the drawing commands queue 440 and con-
vert it to an image file, e.g., JPEG, BMP, PNG, or the like, and
provide the image file to the HTTP handler 422 so that the
HTTP handler 422 can send the image file along with the
associated coordinates to the web browser (e.g., 312 in FIG.
3A or3B). An additional difference is that the remote desktop
client 432 is shown as a separate module/functional block
relative to the remote desktop client adapter 430.

FIG. 4C is a conceptual block diagram of an image 400C of
a remote desktop of a remote machine. The image 400C can
include the entire desktop of the remote machine. The image
may be provided by a remote desktop client, e.g., 432 in FIG.
4A or 4B, as part of a remote desktop drawing command for
a remote desktop session with a remote machine. A suitable
remote desktop display protocol may be used for the remote
desktop session. Examples can include, but are not limited to,
the Microsoft® Remote Desktop Protocol (RDP), personal
computer over internet protocol (PColP), remote FX (RFX)
protocol, remote framebuffer (RFB) protocol, Citrix indepen-
dent computing architecture (ICA), NX protocol, and/or
other suitable remote desktop display protocols. In one

US 9,244,912 B1

15

example, it may be advantageous to use the RDP (which is a
push-type protocol) as it is widely used. As shown, image
400C can include regions that have changed, e.g., image
portion 450 and image portion 452, relative to a prior instance
of'the image of the desktop. Both image portions 450 and 452
can be provided, along with their coordinates, in a drawing
command from an associated remote desktop server to an
associated remote desktop client (to be processed and trans-
lated and then to be sent to a web browser by a transcoding
server) for a remote desktop session. Alternatively, image
portion 450 may be provided in a drawing command with its
coordinates, and then image portion 452 may be provided in
another drawing command with its coordinates separately
(e.g., sequentially). Thus, when only a portion of the remote
desktop has changed, then only the changed portion can be
provided from a remote desktop server to its remote desktop
client, instead of providing the entire image of the remote
desktop to reduce traffic and improve efficiency.

FIG. 5 is a conceptual block diagram and image of a web
browser 500 according to certain aspects of the present dis-
closure as used in conjunction with a transcoding server (e.g.,
208in FIG.2A or2B, 330in FIG. 3A or 3B, 400A inFIG. 4A,
or 400B in FIG. 4B) and a remote machine (e.g., 204 in FIG.
2A or2B, or320in FIG. 3A or 3B). In a preferred aspect, web
browser 500 may be an HTMLS5 compatible web browser. In
one aspect, web browser 500 may be web browser 312. Web
browser 500 can include a script client code 520, for example,
a JavaScript client code, and a canvas 530 (e.g., an object or
element in memory supporting 2D drawing or rendering).
The script client code 520 may refer to a script client 314 in
FIG. 3A or 3B. The canvas 530 can include or represent the
entire viewable window (e.g., 130 of FIG. 1) of the browser
(e.g., 312, 500). In a preferred aspect, the canvas 530 is an
HTMLS5 compatible canvas, e.g., a canvas element according
to the HTMLS specification. Examples of suitable web
browsers can include, but are not limited to, Mozilla Firefox,
Google Chrome, Safari, and Opera. Web browser 500 may be
resident on a suitable user device such as a PC or smartphone
or the like.

The script client code 520 can include an input listener 522
responsive to user inputs such as mouse, keyboard, and touch
events. The input listener 522 can send HTTP requests with
the user inputs to a transcoding server, e.g., server 208 in FIG.
2A or 2B or 330 of FIG. 3A or 3B. The script client code 520
may also include a load image function or module 524 that
includes an image onload handler 526, which may extract
drawing coordinates from the HTTP header (e.g., from the
portion known as a cookie), draw the received image onto
canvas 530, and call the load image function 524 again, pass-
ing it its unique identification (ID). An image on error handler
and/or image on abort handler 528 may also be included in the
load image function 524 to handle loading errors. The handler
528 may call the load image function 524. For remote desktop
sessions, the canvas 530 can hold an image of the remote
desktop of the remote machine, e.g., 132 of FIG. 1, and the
user device may display the image onto a display (e.g., 313 in
FIG. 3A or 3B) in the viewable window 130 of the browser
(e.g., 312, 500).

As mentioned previously, an HTMLS5 compatible browser
can be used for exemplary embodiments of the present dis-
closure. HTMLS includes (or supports) a canvas, which
allows for dynamic, real-time, scriptable rendering of 2D
shapes and bitmap images. In one aspect, being scriptable can
mean or include reference to utilizing JavaScript for render-
ing a 2D image. The canvas 530 consists of a drawable region
defined in HTML code with height and width attributes. Java-
Script code may access the canvas region or area through a

10

15

20

25

30

35

40

45

55

60

16

full set of drawing functions similar to other common 2D
APIs, thus allowing for dynamically generated graphics.

In operation, such as accessing a remote machine (e.g., 204
in FIG. 2A or 2B or 320 in FIG. 3A or 3B)) during a remote
desktop session, the input listener 522 may relay user inputs
to the related transcoding server (e.g., 208 in FIG. 2A or 2B or
330 in FIG. 3A or 3B), which interfaces with the remote
machine by way of a remote desktop client and remote desk-
top client adapter (e.g., 350 in FIG. 3A or 3B or 430 in FIG.
4A or 4B). The script client code 520 can also send a number
of drawing requests, as indicated by LoadImage(1)-Loadlm-
age(4). As described previously, the drawing requests can be
handled by the related transcoding server as long polling
requests.

When drawing commands are received from the remote
desktop server via the remote desktop client, the transcoding
server may create/modify an off-screen image of the remote
desktop and provide the actual image and related coordinates
to the browser 500, where the JavaScript client’s image
onload handler (e.g., 528) can then draw the image 532 to the
canvas 530 in accordance with the coordinates extracted from
the HTTP header (e.g., cookie). In one aspect, the image 532
represents a portion of the entire image of the remote desktop
that has been changed, and thus the onload handler can
receive and update a portion of the canvas based on the coor-
dinates received (instead of updating the entire canvas).

In one aspect, a bitmap in a transcoding server (e.g., Java
off-screen bitmap 444) may include or represent a bitmap of
an entire image of a remote desktop (e.g., 132 of FIG. 1).
When a portion(s) of the image of the remote desktop is
changed (e.g., image portion 450, 452) in response to, for
example, a user’s input command or other changes by the
remote machine, the changed image portion(s) and its remote
desktop coordinates may be provided as a remote desktop
drawing command(s) to a remote desktop client adapter (e.g.,
430) from a remote desktop server (e.g., 322) via a remote
desktop client (e.g., 432).

In one aspect, the remote desktop client adapter may trans-
late the remote desktop drawing command(s) into a graphics
drawing command(s), generate coordinates (corresponding
to the remote desktop coordinates) based on the graphics
drawing commands, and provide the coordinates into a pool
(e.g., 442). The remote desktop client adapter may execute
the graphics drawing command(s) to draw into the bitmap, or
stated in another way to generate a bitmap portion(s) to
update a portion(s) of the bitmap (e.g., a portion(s) of 444)
according to the coordinates generated by the remote desktop
client adapter. The updated portion(s) of the bitmap repre-
sents the changed image portion(s) of the remote desktop. In
a preferred aspect, the updated portion(s) of the bitmap is a
portion of a Java off-screen bitmap 444.

In one aspect, an HTTP handler (e.g., 422) may form an
image file corresponding to the updated portion(s) of the
bitmap, obtain the coordinates (e.g., from 442) for the image
file, and place the coordinates into a section of an HTTP
header. The HTTP handler may then provide the image file
and the coordinates to a web browser (e.g., 312, 500) or more
specifically to a script client code (e.g., 520) in a single HTTP
response.

A canvas (e.g., 530) may store the entire image of a remote
desktop (e.g., 132 of FIG. 1) to be displayed on adisplay (e.g.,
100, 313) and then a portion(s) of the canvas 530 may be
updated when a portion(s) of the image of the remote desktop
is changed during a remote desktop session. In this example,
when the script client code receives an image file and the
coordinates corresponding to the changed portion(s) of the
image of'the remote desktop, the script client code can update

US 9,244,912 B1

17

aportion of the canvas at canvas coordinates corresponding to
the coordinates received from the HTTP handler so that the
updated portion of the canvas represents the image contained
in the image file.

Because drawing commands provided by a remote desktop
client may include only those image portion(s) or region(s) of
the remote desktop (with corresponding coordinates) that
have been changed or updated relative to previous drawing
commands, the image provided to the canvas (e.g., 530) can
accordingly be limited or minimized to include just the
updated portion(s) of the remote desktop, in exemplary
embodiments. The updates on the remote desktop can be due
to auser’s input (e.g., via a remote desktop session) or caused
by the remote machine itself, e.g., a new indicated time from
the system clock. Because the size of the image(s) provided to
the canvas (e.g., 530) in response to drawing requests can be
minimized, the traffic for the remote session can be reduced or
minimized, facilitating a real time user experience for a
remote desktop session.

In one example, a remote desktop drawing command may
comprise a drawing call such as gdi_bitmap (*data, top, left,
width, height, 16, 32) in which “*data” may be a pointer to a
memory location where the bitmap data is located. The
parameters “top, left, width, height” may represent the coor-
dinates for the bitmap data. The parameter “16” may be the
number of bits in red-green-blue (RGB), and the parameter
“32” may be the number of bits in alpha-red-green-blue
(ARGB). Thus, this exemplary call indicates where the bit-
map data for a portion of the image of the remote desktop
(e.g., the portion that has been changed) is located, the coor-
dinates for the bitmap data, and the number of bits used to
convert from an RGB format to an ARGB format.

In another example, a graphics drawing command may
comprise a drawing call such as draw-rect (color, top, left,
width, height). This drawing call can draw a rectangle at the
coordinates specified by “top, left, width, height” using the
specified “color.”

In oneaspect, when long polling is utilized between a client
device and a transcoding server that uses HTTP (a pull pro-
tocol), traffic to the client device can be reduced to a level
experienced by a push-type protocol.

FIG. 6 illustrates an example of remote desktop client
adapter 600, in accordance with various aspects of the subject
technology. The remote desktop client adapter 600 facilitates
communication between the remote machine 690, which may
include a remote desktop server 680, and the rest of the
transcoding server components, e.g., the web application
container (e.g., 420 in FIG. 4A or 4B) and drawing commands
queue (e.g., 440 in FIG. 4A or 4B). In some aspects, a remote
desktop client adapter 600 may provide a common interface
between remote desktop client (e.g., 352 in FIG. 3A or 3B,
432 in FIG. 4A or 4B, or 640 in FIG. 6) and web application
container (e.g., 420 in FIG. 4A or 4B). In some aspects, a
remote desktop client adapter 600 may include a drawing
command handler 630, a remote desktop client manager 610,
a user input handler 620, and remote desktop client 640. In
some aspects, a remote desktop client adapter does not nec-
essarily include a remote desktop client 640. Rather, a remote
desktop client may be amodule separate from remote desktop
client adapter (e.g., as shown in FIG. 3B).

According to various aspects of the subject technology, an
adapter 600 may include a remote desktop client manager
610, which may be configured to receive a connection request
(e.g., an HTTP request specifying a particular remote
machine) indirectly from a web browser (e.g., 312 in FIG. 3A
or3B) viaa web application container (e.g., 340 in FIG.3A or
3B or 420 in FIG. 4A or 4B). In some aspects, a connection

20

25

40

45

55

60

18

request may be received from a web browser via a web appli-
cation container that communicates with the web browser.
For example, the connection request can be received from a
web browser via an HTTP handler (e.g., 344 or 422) of a web
application container. In some aspects, a remote desktop cli-
ent manager 620 may manage (or facilitate) establishing a
remote desktop session between a remote desktop client 640
and a remote desktop server 680 in response to the connection
request. For example, a remote desktop client manager 610
may manage (or facilitate) starting the remote desktop ses-
sion, passing credentials, settings, preferences, etc., to a
remote desktop server (e.g., via a remote desktop client), and
stopping the remote desktop session.

In one aspect, a remote desktop client manager 610 may
receive a connection request, e.g., a request originated from a
web browser to establish a connection with remote desktop
server (e.g., 322 or 680). In response to the connection
request, the remote desktop client manager 610 may generate
session control commands that are compatible with the
remote desktop client, remote desktop server and the remote
desktop display protocol, e.g., session control commands that
can be understood and processed by remote desktop client
and remote desktop server and that can be transmitted and
received by remote desktop client and remote desktop server
utilizing the remote desktop display protocol. These session
control commands may include a command for starting a
remote desktop session, a command for stopping the remote
desktop session. The session control commands may include
one or more of credentials, settings, preferences, etc. and
command(s) for passing credentials, settings, preferences,
etc. to remote desktop server (e.g., 322 or 680). In response to
the connection HTTP request, the remote desktop client man-
ager 610 may provide the appropriate session control com-
mand(s), generated by the remote desktop client manager, to
the remote desktop client (e.g., 352 or 640). The remote
desktop client may then use the session control commands
received from the remote desktop client manager 610 to start
aremote desktop session with the remote desktop server, pass
credentials, settings, preferences, etc., to remote desktop
server, and stop the remote desktop session.

In one aspect, a remote desktop client manager 610 can
translate a connection request that is not compatible with a
remote desktop client, a remote desktop server, or a remote
desktop display protocol (e.g., that cannot be understood or
processed by a remote desktop client, a remote desktop server
or a remote desktop display protocol) into session control
commands that are compatible with the remote desktop cli-
ent, the remote desktop server and the remote desktop display
protocol (i.e., that can be understood and processed by remote
desktop client and remote desktop server and that can be
communicated between remote desktop client and remote
desktop server utilizing the remote desktop display protocol).

In some aspects, facilitating an establishment of a remote
desktop session, between a remote desktop client and a
remote desktop server, comprises generating a session con-
trol command based on the initial HTTP request. In some
aspects, facilitating an establishment of the remote desktop
session comprises transmitting the session control command
from a remote desktop client manager 610 to a remote desk-
top client 640 and then from the remote desktop client to a
remote desktop server 680. For example, the session control
command may be transmitted to the remote desktop server
680 via the remote desktop client 640 that communicates with
remote desktop server 680 using a remote desktop display
protocol. In some aspects, the remote desktop display proto-
col comprises at least one of the Microsoft® Remote Desktop
Protocol (RDP), personal computer over internet protocol

US 9,244,912 B1

19
(PColP), remote FX (RFX) protocol, remote framebuffer
(RFB) protocol, independent computing architecture (ICA),
NX protocol, and other suitable remote desktop display pro-
tocols. In some aspects, the RFB protocol comprises virtual
network computing (VNC).

According to certain aspects of the subject technology, a
server such as server 208, 330, 400A, 4008 (e.g., via aremote
desktop client manager 610) can maintain open connections
between its remote desktop client and one or more remote
desktop servers at all times, allowing single or multiple client
devices to be interactively connected and disconnected to
remote desktop sessions instantly. In some aspects, remote
desktop sessions may never need to be disconnected from the
one or more remote desktop servers, as a server can maintain
active connections to the one or more remote desktop servers.
Of course, a remote machine (e.g., 690) may go down for
reasons that are outside of a related transcoding server’s
control; however, the connection can be maintained as long as
the remote machine is available for remote access. For
example, a remote desktop client manager 610 may continu-
ously maintain the remote desktop session until the remote
desktop server disconnects from the remote desktop session
depending on the remote desktop server’s idle remote con-
nection settings. In some aspects, remote desktop sessions
established utilizing a remote desktop client manager 610
may be resized and adjusted for best display and user expe-
rience to utilize the full capability of the client devices.

According to various aspects of the subject technology, a
user input handler 620 may receive an input request indirectly
from a web browser such as a server 208, 330, 400A, 400B
(e.g., via an HTTP handler 344 or 422), and convert the input
request into a format recognized by and/or compatible with
remote desktop client 640 and remote desktop server 680. For
example, user input handler 620 receives an input request that
was transmitted utilizing a request-response protocol from
web browser. In preferred aspects, the request-response pro-
tocol may comprise hypertext transfer protocol (HTTP). In
another aspect, the request-response protocol may comprise
other suitable request-response protocols. In some aspects,
the input request is received from a web browser (e.g., 312 in
FIG. 3A or 3B) via aweb application container (e.g., 340 420)
that communicates with the web browser. For example, the
input request is received via an HTTP handler (e.g., 344 or
422) ofaweb application container. In some aspects, the input
request comprises at least one of a mouse event, a keyboard
event, and a touch event. User input handler 620 may translate
the input request that is in a format suitable for or compatible
with the request-response protocol into an input command
(e.g., aremote desktop display protocol input command) that
is suitable for or compatible the remote desktop display pro-
tocol. The user input handler 620 may transmit the input
command to a remote desktop client 640, which may transmit
the input command to a remote desktop server 680. For
example, user input handler 620 may facilitate transmitting
the input command to remote desktop server 680 via remote
desktop client 640 that communicates with remote desktop
server 680 using the remote desktop display protocol. In one
aspect, an input request is sometimes referred to as a user
input command and vice versa. Please note, however, if an
input request is referred to as an input command when it is
received via HTTP, it is a HTTP request rather than a com-
mand. In one aspect, an input command is sometimes referred
to as an input call or a remote desktop input command and
vice versa.

A remote machine 690 (e.g., its remote desktop server 680)
may execute one or more actions based on the input command
and send drawing data, as a result of the executed one or more

10

15

20

25

30

35

40

45

50

55

60

65

20

actions, to a server such as a transcoding server 208, 330,
400A or 400B (e.g., a remote desktop client 620 of the
server). According to various aspects, a remote desktop client
640 can receive a screen drawing command transmitted from
a remote machine 690 (e.g., its remote desktop server 680)
utilizing the remote desktop display protocol, in response to
the input command transmitted to remote machine 690 (e.g.,
its remote desktop server 680). In one aspect, a screen draw-
ing command received from a remote machine may be some-
times referred to as a drawing command, a remote machine
drawing command, or a remote desktop drawing command
received from a remote machine and vice versa. The drawing
command handler 630 may then receive the screen drawing
command from the remote desktop client 640 connected to
the remote machine 690. For example, a drawing command
handler 630 can receive the screen drawing command from a
remote machine 690 (e.g., its remote desktop server 680) via
a remote desktop client 640 that communicates with the
remote machine 690 (e.g., its remote desktop server 680)
using the remote desktop display protocol.

According to certain aspects, a drawing command handler
630 may convert a screen drawing command into a format
recognized by and/or compatible with a web browser (e.g.,
312 in FIG. 3A or 3B). For example, a drawing command
handler 630 may translate a screen drawing command that is
suitable for or compatible with a remote desktop client, a
remote desktop server and a remote desktop display protocol,
into a graphics drawing command that is compatible with the
server 208, 330, 400A or 400B, such as a Java graphics
(abstract window toolkit) API command when the server is a
Java transcoding server. In some aspects, translating the
screen drawing command can include calculating new, and/or
adjusting received drawing command parameters, and/or
making adjustments to the received bitmap data, such as, but
not limited to, converting the 16-bit red-green-blue (RGB)
5-6-5 color format into a 32-bit alpha-red-green-blue
(ARGB) 8-8-8-8 format. In some aspects, drawing command
handler 630 may execute the graphics drawing command
(e.g., Java graphics API command) to draw into an already
created image bitmap, (e.g., the off-screen Java bitmap 444)
of'the drawing commands queue (e.g., 360 in FIG. 3A or 3B,
or 440 in FIG. 4A or 4B) at the transcoding server (e.g., 330
in FIG. 3A or 3B, 400A in FIG. 4A, or 400B in FIG. 4B). In
one aspect, Java graphics APl command is sometimes
referred to as Java graphics command or Java graphics draw-
ing command. In one aspect, the off-screen bitmap may be a
storage or memory location that is a part of a drawing com-
mands queue (e.g., 360 or 440) accessible by an application
container (e.g., 340 or 420). In one aspect, the size of an
off-screen bitmap may represent the size of a remote session.
Stated in another way, the size of an off-screen bitmap may
represent the size of the remote desktop, or an off-screen
bitmap may be a bitmap representation of an entire image of
a remote desktop.

Preferred embodiments of the present disclosure may, in
essence, translate a request in HTTP to a command in a
remote desktop display protocol and vice versa (e.g., translate
requests/responses transmitted/received via HTTP to com-
mands transmitted/received via a remote desktop display pro-
tocol, and vice versa) for a remote session between a client
device and a remote machine. For example, the input request
from the web browser such as a server 208, 330, 400A, 400B
may be translated into the input command (e.g., a remote
desktop input command) that is suitable for or compatible
with the remote desktop display protocol and is received by
remote desktop server 680 via remote desktop client 640. The
screen drawing command transmitted from the remote

US 9,244,912 B1

21

machine 690 (e.g., in response to the input command) utiliz-
ing the remote desktop display protocol may be translated
into the graphics drawing command that is compatible with
the server 208, 330, 400A or 400B, such as a Java graphics
(abstract window toolkit) API command. In some aspects,
HTTP is a pull protocol while a remote desktop display pro-
tocol may be a push protocol. In some aspects, a drawing
command in push protocol may be translated into a drawing
update (or a drawing response) in pull protocol during a
remote session between a client device and a remote machine.

With continued reference to FIG. 6, a drawing command
handler 630, when drawing into the off-screen bitmap, may
transmit pixel data to the off-screen bitmap. In some aspects,
the pixel data is used to update a portion of the off-screen
bitmap (e.g., an off-screen Java bitmap). In some aspects, a
drawing command handler 630 may transmit the pixel data to
the off-screen bitmap so that the updated portion of the off-
screen bitmap may be stored and/or converted to an image
file.

According to certain aspects, a drawing command handler
630 can generate one or more coordinates corresponding to
the updated portion of the oft-screen bitmap (e.g., an image
drawn into the off-screen bitmap when the graphics drawing
command is executed). For example, the one or more coor-
dinates may identify the locations where the corresponding
image bitmap is to be executed on the canvas of a web
browser. In one example, the one or more coordinates may be
extracted or copied from the graphics drawing command. A
drawing command handler 630 may also transmit the one or
more coordinates to a dirty coordinates pool 442 in FIG. 4A
or 4B that is a part of a drawing commands queue (e.g., 360 or
440). In some aspects, a drawing command handler 630 may
transmit the one or more coordinates to the dirty coordinates
pool so that the one or more coordinates may be stored in the
dirty coordinates pool. Thus, a drawing command handler
630 may update “dirty” region coordinates in the drawing
commands queue. In some aspects, a drawing command han-
dler 630 may transmit a notification signal to a drawing
requests queue (e.g., 426 in FIG. 4A or 4B) of a web appli-
cation container (e.g., 420). In some aspects, the notification
signal/message may indicate that the image bitmap (e.g., the
off-screen Java bitmap) has been updated.

FIG. 7 is a sequence diagram 700 of the interactions
between a transcoding server (e.g., 208, 330, 400A or 400B)
as used in conjunction with a web browser (e.g., 312) and a
remote machine (e.g., 204, 320 or 690), according to certain
aspects of the present disclosure. The sequences are shown as
701-724. As shown at 701, a web browser can send an initial
HTTP request to a transcoding server (e.g., transcoding
server 400A of FIG. 4), for example, to its HTTP handler
(e.g., 422). The initial HTTP request can include a URL that
specifies a desired remote machine. At 702 and 703, the
transcoding server can facilitate establishing a remote desk-
top connection with the remote machine (e.g., its remote
desktop server). At 704, the transcoding server also can pro-
vide a client code, e.g., JavaScript client code, to the web
browser. The JavaScript client code in the web browser can
generate a number of drawing requests, which can be handled
by the transcoding server as long polling requests. In exem-
plary embodiments, four drawing requests may be pending at
any one time although the number can be selected as desired
and optimized for different implementations.

As shown atthe bottom ofthe diagram, e.g., at 719 and 722,
the web browser can provide user input requests (as HTTP
requests) to the transcoding server, which in turn, e.g., at 721
and 724, can provide the user input commands to the remote
machine, e.g., for control of the remote desktop of the remote

10

15

20

25

30

35

40

45

50

55

60

65

22

machine. At 705, the remote machine can provide drawing
commands (one command is shown) to the drawing com-
mands queue (e.g., 360 or 440) in the transcoding server by
way of the remote desktop client adapter (e.g., 350, 430 or
600), which draws a corresponding image of the remote desk-
top into the off-screen bitmap in the drawing commands
queue. In response to the drawing command, the drawing
commands queue can provide, at 706, notification to the
drawing requests queue (e.g., 426) in the long polling handler
module (e.g., 342) of the transcoding server. In response, the
first pending drawing request can be taken from the drawing
requests queue and provided to the HTTP handler. In
response, at 707 and 708, the HTTP handler may obtain the
image from the drawing commands queue. At 709, the HTTP
handler may provide the image and corresponding coordi-
nates in a response sent to the script client (e.g., 314 or 520, or
more specifically 526) of the web browser. The script client
may then, at 711, draw the image (e.g., 532) to the canvas
(e.g., 316 or 530) using the appropriate coordinates, extracted
from the cookie, for displaying the remote desktop in the web
browser.

In one aspect, an HTTP handler (e.g., 422) is a standard
HTTP handler in that when it receives a request from a web
browser, it responds without waiting or storing the request.
For example, when an HTTP handler receives a user input
request as a HTTP request at 719 or 722 from a web browser,
the HTTP handler responds immediately with a null response
at 720 and 723, respectively (while the request is sent to the
remote machine via a remote desktop client adapter). In one
aspect, a long polling handler (e.g., 424) may be used to
receive a request and respond to it based on an event, and a
long polling request may be stored. For example, under one
condition (e.g., a drawing command is pending), then the
request is responded immediately (e.g., the polling handler
sends the drawing request to the HTTP handler so that the
HTTP handler can send a response to the drawing request
immediately. Under another condition (e.g., a drawing com-
mand is not pending), then the request may be stored away
(e.g., into a drawing requests queue) until a condition is
satisfied (e.g., a new drawing command has arrived at a draw-
ing commands queue).

In one aspect, a remote desktop is a desktop of a remote
machine. In one aspect, during a remote desktop session with
a remote machine, a web browser of a client device may
access, control and/or view any or all applications and files
resident on the remote machine. In another aspect, during a
remote desktop session with a remote machine, depending on
the user’s credentials and settings, a web browser may be
allowed to access, control and/or view some of the applica-
tions and files resident on the remote machine.

In one preferred aspect, each of a client device, a transcod-
ing server, and a remote machine is a separate and distinct
machine that is remote from one another. In one aspect, a
transcoding server may be a machine that can communicate
with one or more client devices and one or more remote
machines, and a transcoding server may be a machine that can
communicate over a web. In one aspect, a web browser may
be an application that allows a user to retrieve, present or
communicate information over a web.

FIG. 8A is a conceptual block diagram of an example of a
web server 820 according to certain aspects of the present
disclosure as used in conjunction with a web browser 810
(e.g., a HTMLS5-compatible browser or windows web
browser) and a remote machine 830. Web browser 810 may
belong to a client device 802, such as a smart phone or laptop
computer, and includes (i) a canvas 812 (e.g., a HTML canvas
supporting 2D rendering, such HTMLS canvas) and (ii) a

US 9,244,912 B1

23

script client 814, e.g., a JavaScript client, in an advantageous
aspect. The script client 814 may receive an image and cor-
responding coordinates from the web server 820 and draw the
image to the canvas 812, using the appropriate coordinates for
displaying the remote desktop in the web browser.

Inhigh-level description, a web server 820 can include two
main functional blocks or modules: a web application 822,
such as a model-view-controller (MVC) application of the
ASPNET framework, and a remote desktop client wrapper
826. The web application 822 can include an HTTP handler
824 (e.g., an asynchronous HTTP handler, such as an HTTP
controller of the ASPNET MVC) for handling HTTP
requests (e.g., HTTP initial connection requests, HTTP input
requests and HTTP drawing updates requests) from the web
browser 810 and HTTP responses to the web browser 810.
The HTTP handler 824 may handle HTTP requests synchro-
nously or asynchronously. A synchronous handling involves
an immediate response that is provided in the order of receiv-
ing a request that needs immediate attention, whereas the
asynchronous handling may involve an immediate response
or a delayed response depending on the nature of the request.
For example, the response to a synchronous request including
an initial connection request or an input request (e.g., user
input events, such as mouse, keyboard, or touch events) is a
synchronous response and a response to an asynchronous
request including a drawing update request is an asynchro-
nous response, which may be immediate, if there are changes
in the remote desktop that needs immediate attention or
delayed, if there are no changes in the remote desktop. In the
asynchronous case, the browser, after making the request may
engage in other activities while waiting for the asynchronous
response from the web server.

The remote desktop client wrapper 826 can be configured
to interface with a remote desktop client (not shown in FIG.
8A for simplicity), e.g., from a third-party vendor, for com-
munication with the remote machine 830, which may include
a remote desktop server 832, as shown. Embodiments of the
web server 820 can be configured to provide an application
framework for hosting one or more web applications and/or
function as a windows web application container that can run
windows API. In some aspects, a remote desktop client wrap-
per 826 may be referred to as aremote desktop client common
interface. The desktop client wrapper 826 may function to
communicate with the remote desktop server 832 of the
remote machine 830 using a remote desktop display protocol.
The remote desktop client may communicate remote desktop
protocol data, for example, send a user’s input to the remote
machine, and receive drawing data from the remote machine
via its specific remote desktop display protocol.

In one aspect, a remote desktop server 832 may refer to a
software installed on the remote machine 830, and a remote
desktop server 832 may allow applications, particularly those
including graphical applications, which run on the remote
machine 830, to be displayed at a machine that is separate and
distinct from the remote machine 830 (e.g., on display 804 of
the client device 802 using web browser 810). Remote desk-
top server 832 may allow drawing commands representing an
image of a desktop of the remote machine to be transmitted to
the separate machine via the web server 820. In one aspect,
remote desktop client wrapper 826 may refer to software
installed on the machine that is separate and distinct from the
remote machine 830 (e.g., web server 820). Remote desktop
client wrapper 826 may send requests to remote desktop
server 832 via a remote desktop display protocol and in
response receive the drawing commands representing the
image of the desktop of the remote machine via the remote
desktop display protocol.

10

15

20

25

30

35

40

45

50

55

60

65

24

FIG. 8B is a conceptual block diagram of an example of a
web server, a browser and a remote machine. One advanta-
geous aspect of the disclosure permits the following: a
browser 810 may facilitate communication to and from a web
server 820 using HTTP protocol and vice versa, while the web
server 820 may facilitate communication to and from a
remote machine 830 using a remote desktop display protocol
and vice versa. Like components are labeled with identical
element numbers for ease of understanding.

FIG. 9 is a conceptual block diagram of an example of a
web application 910. In one aspect, a web application 910
may include an asynchronous HTTP handler 912, a drawing
commands buffer 920, and a remote desktop client wrapper
930. In operation, the asynchronous HTTP handler 912 may
receive and respond to HTTP requests from a web browser
(e.g., web browser 810 of FIG. 8) on a user device (e.g., 202
inFIG.2A or310in FIG. 3A or 3B). The asynchronous HTTP
handler 912 may provide user input requests to the remote
desktop client wrapper 930, which provides a common inter-
face between the asynchronous HTTP handler 912 and the
remote desktop client 932. The asynchronous HTTP handler
912 may include, an HTTP request switch 914, an HTTP
handler response ready module 916, and a drawing requests
queue 918. The HTTP request switch 914 may handle HTTP
drawings requests, HTTP requests for connection, and user
input events (e.g., mouse, keyboard, or touch events). The
HTTP request switch 914 may be configured to pass connec-
tion and input requests received from a script client (e.g.,
script client 814 of FIG. 8) of a browser (e.g., browser 810 of
FIG. 8) and pass them to remote desktop client wrapper 930.

With regard to drawing requests, if there are pending draw-
ing commands, the HTTP request switch 914 may handle the
request synchronously by passing the drawing request to the
HTTP handler response ready module 916 for completing the
pending requests. Otherwise, the drawing request may be
handled asynchronously by adding the drawing request to the
drawing requests queue 918. In one aspect, pending drawing
commands may include coordinates for the image in a draw-
ing coordinates queue 924 and/or an image (e.g., memory
bitmap 922) in the drawing commands buffer 920. In an
aspect, a windows bitmap may refer to a windows Graphics
API memory bitmap, which in one aspect, may refer to a
memory bitmap or an off-screen bitmap. The HTTP handler
response ready module 916 can handle sending HTTP
responses back to the client/web browser (e.g., 810 in FIG. 8).
In one aspect, the HTTP handler response ready module 916
is a standard HTTP handler. The drawing requests queue 918
can function to store incoming HTTP drawing requests
received by the HT'TP request switch 914 from the client (e.g.,
HTMLS5 compatible web browser such as web browser 810 in
FIG. 8) and respond to them when there are pending drawing
commands from the drawing commands buffer 920. The
drawing commands buffer 920 can serve two purposes: hold-
ing or storing an off-screen image, e.g., memory bitmap 922,
onto which drawing commands are executed; and, serving as
the drawing coordinates queue 924, e.g., a queue of coordi-
nates for drawing commands. The coordinates can be those of
regions or areas of an image of the remote desktop that need
to be redrawn at the client device to reflect changes on the
remote desktop. The areas or regions are sometimes referred
to as drawing regions. The drawings commands buffer 920
can function as memory or storage that is accessible by both
the asynchronous HTTP handler 912 and the remote desktop
client wrapper 930.

The remote desktop client wrapper 930 can be configured
to interface with any suitable remote desktop client 932 for
communication with a remote machine (e.g., 830 in FIG. 8),

US 9,244,912 B1

25

which may be configured to include a remote desktop server
(e.g., 832 in FIG. 8). The remote desktop client wrapper 930
may translate user input information (e.g., mouse, keyboard,
and touch events) into respective remote desktop input calls
for the remote desktop client 932. The remote desktop client
wrapper 930 may translate the drawing commands (e.g., GDI
drawing commands) of an image of a remote desktop
received from a remote machine (e.g., 204 in FIG. 2A or 2B
or 320 in FIG. 3A or 3B) via a remote desktop display pro-
tocol and the remote desktop client 932, into windows graph-
ics drawing commands.

After receiving and translating the drawing commands
from the remote desktop client 932, the remote desktop client
wrapper 930 may draw into an off-screen memory bitmap 922
stored in the drawings commands bufter 920 as shown. More
specifically, the remote desktop client wrapper 930 may pro-
vide, as an image, a portion of drawing regions of the remote
desktop affected by the user’s input from the user device.
Along with the drawing commands, the remote desktop client
wrapper 930 may extract, from the drawing command(s),
coordinates of the drawing region(s) from the remote desktop
client and provide the drawing coordinates to the drawing
commands buffer 920 (e.g., drawing coordinates queue 924),
as indicated. The coordinates can be placed into an HTTP
header section (e.g., by HT TP handler response ready module
916) to send drawing region coordinates (e.g., as cookie),
along with an image, to a browser (e.g.,312in FIG.3A or 3B)
for display.

In the event there are new drawing coordinates in the draw-
ing commands buffer 920 (e.g., in the drawing coordinates
queue 924), drawing commands buffer 920 may send a noti-
fication to the drawing requests queue 918 so that any pending
request in the drawing requests queue 918 can be forwarded
to the HTTP handler response ready module 916 for serving.
The HTTP handler response ready module 916 may then
reach to the drawing commands buffer 920 (e.g., drawing
coordinates queue 924), and obtain the drawing coordinates
from the drawing coordinates queue 924. The HTTP handler
response ready module 916 may then place the drawing coor-
dinates into an HTTP header section (known as a cookie). In
addition, according to those coordinates, the HTTP handler
response ready module 916 may obtain an image portion
from the off-screen memory bitmap 922. The HTTP handler
response ready module 916 may then send the image (e.g., as
a joint photographic experts group (JPEG) image, or a por-
table network graphics (PNG) image) as well as the coordi-
nates, which are stored in an HTTP response header section,
to the web browser (e.g., 810 in FIG. 8) for display at the user
device’s display. As a result, the web application 910 can
facilitate a remote desktop session between a user device
(e.g., 202 in FIG. 2A or 2B or 310 in FIG. 3A or 3B) and a
remote machine (e.g., 204 in FIG. 2A, 3B, 320 in FIG. 3A or
3B. or 830 in FIG. 8) without the need for the user device to
utilize proprietary plug-ins or protocols.

In one aspect, an image (or an image file such as a windows
image file) and drawing coordinates sent by a web server
(e.g., awindows web server) to a windows web browser may
be considered as an example of web browser drawing
updates. In a preferred aspect, web browser drawing updates
are compatible with the windows web browser so that the
windows web browser can recognize the web browser draw-
ing updates and process them to display an image at the
appropriate location on a display. Web browser drawing
updates may be implemented with other types of drawing data
and commands.

In one aspect, an HTTP protocol (the requests of which
may be handled with HT TP request switch and HT TP handler

10

15

20

25

30

35

40

45

50

55

60

65

26

response ready module) between a client device and a web
server is a pull protocol, and a remote desktop display proto-
col utilized between a web server and a remote machine is a
push protocol.

The remote desktop client wrapper 930 may receive a
user’s input information, data, or commands (e.g., mouse,
keyboard, and touch events) from HTTP request switch 914
and translate the input information/commands into respective
remote desktop input calls, which are sometimes referred to
as remote desktop input commands. The remote desktop cli-
ent wrapper 930 may also translate the drawing commands of
the remote desktop, e.g., GDI drawing commands, received
from a remote desktop server (e.g., remote desktop server 832
of FIG. 8, via a remote desktop display protocol and remote
desktop client 932) into windows graphics application pro-
gramming interface (API) commands. Windows graphics
API commands in themselves are not suitable for the web
browser; but they are an intermediary step towards achieving
browser compatibility. The remote desktop client wrapper
may then execute those windows graphics API commands,
i.e., drawing into an off-screen memory bitmap, which can be
stored in the drawing commands buffer 920. In an alternative
embodiment, the drawing commands buffer 920 may receive
the windows graphics API commands from the remote desk-
top client wrapper and execute the windows graphics API
commands to draw into an off-screen memory bitmap. The
HTTP handler response ready module 916 can create an
image, such as a JPEG image, or PNG image, or a bitmap file
(BMP) image or any other image file in an image format
suitable for a browser (e.g., a windows web browsers), from
the memory off-screen bitmap; and the resulting image is
suitable for the browser 810 of FIG. 8. In one aspect, as the
image (e.g., a JPEG or PNG image) is created in real time,
when it is created, it is simply sent to the web browser without
being stored at the web server. In one aspect, a web server may
comprise a web application. In one aspect, a web application
may be a part of a web server. In one aspect, a web application
may refer to a web server. In one aspect, an asynchronous
HTTP handler may be a part of a web application. In one
aspect, an asynchronous HTTP handler may refer to a web
application. In an aspect, a web server may be a windows web
server. In one aspect, a browser may be a windows web
browser.

FIG. 10 is a conceptual block diagram of an example of a
web browser 1010 as used in conjunction with the web server
820 of FIG. 8 and the remote machine 830 of FIG. 8. In a
preferred aspect, the web browser 1010 may be a windows
web browser compatible with HTMLS5. Web browser 1010
can include a script client code 1030, for example, a JavaS-
cript client code, and a canvas 1020 (e.g., an object or element
in memory supporting 2D drawing or rendering). The script
client code 1030 may refer to a script client 814 of FIG. 8. In
one aspect, script client code may refer to client script code.
The canvas 1020 can include or represent the entire viewable
window (e.g., 130 of FIG. 1) of the browser (e.g., 810 of FI1G.
8 or 1010). In a preferred aspect, the canvas 1020 is an
HTMLS5 compatible canvas, e.g., a canvas element according
to the HTMLS specification. Examples of suitable windows
web browsers can include, but are not limited to, Mozilla
Firefox, Google Chrome, Windows Safari, and Opera. Web
browser 1010 may be resident on a suitable user device such
as a PC, a smartphone, or the like.

The script client code 1030 can include an input listener
1032 responsive to user inputs such as mouse, keyboard, and
touch events. The input listener 1032 can send HTTP requests
with the user inputs to a web server, e.g., a web server of web
application 910 in FIG. 9. The script client code 1030 may

US 9,244,912 B1

27

also include a load image function or module 1034 that can
handle HTTP image requests asynchronously on the web
server, and includes an image onload handler 1036, which
may extract drawing coordinates from the HT'TP header (e.g.,
from the portion known as a cookie), draw the received image
onto canvas 1020, and call the load image function 1034
again, passing it its unique identification (ID). An image on
error handler and/or image on-abort handler 1038 may also be
included in the load image function 1034 to handle loading
errors. The on-abort handler 1038 may call the load image
function 1034. For remote desktop sessions, the canvas 1020
can hold an image of the remote desktop of the remote
machine, e.g., 132 of FIG. 1, and the user device may display
the image onto a display (e.g., 313 in FIG. 3A or 3B) in the
viewable window 130 of a browser (e.g., 810).

As mentioned previously, an HTMLS5 compatible browser
can be used for exemplary embodiments of the present dis-
closure. HTMLS includes (or supports) a canvas, which
allows for dynamic, real-time, scriptable rendering of 2D
shapes and bitmap images. In one aspect, being scriptable can
mean or include reference to utilizing a script for rendering a
2D image. The canvas 1020 consists of a drawable region
defined in HTML code with height and width attributes.
Script codes may access the canvas region or area through a
full set of drawing functions similar to other common 2D
APIs, thus allowing for dynamically generated graphics.

In operation, such as accessing a remote machine (e.g., 830
of FIG. 8) during a remote desktop session, the input listener
1032 may relay user inputs to the related web server (e.g., 820
or 910), which interfaces with the remote machine by way of
a remote desktop client and remote desktop client wrapper
(e.g., 826 in F1G. 8). The script client code 1030 can also send
anumber of drawing requests, as indicated by L.oadImage(1)-
Loadlmage(4).

When drawing commands are received from the remote
desktop server via the remote desktop client, the web server
may create/modify an off-screen image of the remote desktop
and provide the actual image and related coordinates to the
browser 1010, where the client’s image onload handler (e.g.,
1038) can then draw the image 1022 to the canvas 1020 in
accordance with the coordinates extracted from the HTTP
header (e.g., cookie). In one aspect, the image 1022 repre-
sents a portion of the entire image of the remote desktop that
has been changed, and thus the onload handler can receive
and update a portion of the canvas based on the coordinates
received (instead of updating the entire canvas).

In one aspect, a bitmap in a web server (e.g., memory
bitmap 922) may include or represent a bitmap of an entire
image of a remote desktop (e.g., 132 of FIG. 1). When a
portion(s) of the image of the remote desktop is changed (e.g.,
image portion 450, 452) in response to, for example, a user’s
input command or other changes by the remote machine, the
changed image portion(s) and its remote desktop coordinates
may be provided as a remote desktop drawing command(s) to
a remote desktop client wrapper (e.g., 930 of FIG. 9) from a
remote desktop server (e.g., 832) via a remote desktop client.

In one aspect, the remote desktop client wrapper may trans-
late the remote desktop drawing command(s) into a graphics
drawing command(s), generate coordinates (corresponding
to the remote desktop coordinates) based on the graphics
drawing commands, and provide the coordinates into a queue
(e.g., 924 of FIG. 9). The remote desktop client wrapper may
execute the graphics drawing command(s) to draw into the
bitmap, or stated in another way to generate a bitmap
portion(s) to update a portion(s) of the bitmap (e.g., a
portion(s) of 922) according to the coordinates generated by
the remote desktop client wrapper. The updated portion(s) of

15

25

30

40

45

28

the bitmap represents the changed image portion(s) of the
remote desktop. In a preferred aspect, the updated portion(s)
of'the bitmap is a portion of memory bitmap 922.

In one aspect, an HTTP handler response ready module
(e.g., 916 of FIG. 9) may form an image file corresponding to
the updated portion(s) of the bitmap, obtain the coordinates
(e.g., from 924) for the image file, and place the coordinates
into a section of an HTTP header. The HTTP handler may
then provide the image file and the coordinates to a web
browser (e.g., 810, 1010) or more specifically to a script client
code (e.g., 1030) in a single HTTP response.

A canvas (e.g., 1020) may store the entire image of a
remote desktop (e.g., 132 of FIG. 1) to be displayed on a
display (e.g., 100, 313) and then a portion(s) of the canvas
1020 may be updated when a portion(s) of the image of the
remote desktop is changed during a remote desktop session.
In this example, when the script client code receives an image
file and the coordinates corresponding to the changed
portion(s) of the image of the remote desktop, the script client
code can update a portion of the canvas at canvas coordinates
corresponding to the coordinates received from the HTTP
handler so that the updated portion of the canvas represents
the image contained in the image file.

Because drawing commands provided by a remote desktop
client may include only those image portion(s) or region(s) of
the remote desktop (with corresponding coordinates) that
have been changed or updated relative to previous drawing
commands, the image provided to the canvas (e.g., 1020 can
accordingly be limited or minimized to include just the
updated portion(s) of the remote desktop, in exemplary
embodiments. The updates on the remote desktop can be due
to auser’s input (e.g., via a remote desktop session) or caused
by the remote machine itself, e.g., a new indicated time from
the system clock. Because the size of the image(s) provided to
the canvas (e.g., 1020) in response to drawing requests can be
minimized, the traffic for the remote session can be reduced or
minimized, facilitating a real time user experience for a
remote desktop session.

As discussed above, a remote desktop drawing command
may comprise a drawing call such as gdi_bitmap (*data, top,
left, width, height, 16, 32) in which ‘“*data” may be a pointer
to a memory location where the bitmap data is located. The
parameters “top, left, width, height” may represent the coor-
dinates for the bitmap data. The parameter “16” may be the
number of bits in red-green-blue (RGB), and the parameter
“32” may be the number of bits in alpha-red-green-blue
(ARGB). Thus, this exemplary call indicates where the bit-
map data for a portion of the image of the remote desktop
(e.g., the portion that has been changed) is located, the coor-
dinates for the bitmap data, and the number of bits used to
convert from an RGB format to an ARGB format. In another
example, a graphics drawing command may comprise a
drawing call such as draw-rect (color, top, left, width, height).
This drawing call can draw a rectangle at the coordinates
specified by “top, left, width, and height “using the specified”
color.”

FIG. 11 is a conceptual block diagram of an example of a
remote desktop client wrapper 1100, in accordance with vari-
ous aspects of the subject technology. The remote desktop
client wrapper 1100 facilitates communication between a
remote machine (e.g., 830 of FIG. 8), which may include a
remote desktop server (e.g., 832 of FIG. 8), and the rest of the
web server components, e.g., the asynchronous HTTP han-
dler (e.g., 912 of FIG. 9) and drawing commands buffer (e.g.,
920 in FIG. 9). In some aspects, a remote desktop client
wrapper 1100 may provide a common interface between
remote desktop client (e.g., 932 in FIG. 9) and the asynchro-

US 9,244,912 B1

29

nous HTTP handler (e.g., 912 of FIG. 9). In some aspects, a
remote desktop client wrapper 1100 may include a drawing
command module 1112, a remote desktop session module
1114, a user input module 116, and remote desktop client
1118. In some aspects, a remote desktop client wrapper does
not necessarily include a remote desktop client 1118. Rather,
a remote desktop client may be a module separate from
remote desktop client wrapper (e.g., as shown in FIG. 3B).

According to various aspects of the subject technology, the
remote desktop session module 1114 may be configured to
receive a connection request (e.g., an HTTP request specify-
ing a particular remote machine) indirectly from a web
browser (e.g., 810 of FIG. 8) via the asynchronous HTTP
handler (e.g., 912 in FIG. 9). In some aspects, a connection
request may be received from a web browser via an HTTP
request switch (e.g., 914 of FIG. 9) that communicates with
the web browser. In some aspects, a remote desktop session
module 114 may manage (or facilitate) establishing a remote
desktop session between a remote desktop client 1118 (e.g., a
remote desktop protocol client) and a remote desktop server
832 in response to the connection request. For example, a
remote desktop session module 1114 may manage (or facili-
tate) starting the remote desktop session, passing credentials,
settings, preferences, etc., to a remote desktop server (e.g., via
a remote desktop client), and stopping the remote desktop
session.

In one aspect, a remote desktop session module 1114 may
receive a connection request, e.g., a request originated from a
web browser to establish a connection with remote desktop
server (e.g., 322 or 680). In response to the connection
request, the remote desktop session module 1114 may gen-
erate session control commands that are compatible with the
remote desktop client, remote desktop server and the remote
desktop display protocol, e.g., session control commands that
can be understood and processed by remote desktop client
and remote desktop server and that can be transmitted and
received by remote desktop client and remote desktop server
utilizing the remote desktop display protocol. These session
control commands may include a command for starting a
remote desktop session, a command for stopping the remote
desktop session. The session control commands may include
one or more of credentials, settings, preferences, etc. and
command(s) for passing credentials, settings, preferences,
etc. to remote desktop server (e.g., 832). In response to the
connection HTTP request, the remote desktop session mod-
ule 1114 may provide the appropriate session control com-
mand(s), generated by the remote desktop session module, to
the remote desktop client (e.g., 1118). The remote desktop
client may then use the session control commands received
from the remote desktop session module 1114 to start a
remote desktop session with the remote desktop server, pass
credentials, settings, preferences, etc., to remote desktop
server, and stop the remote desktop session.

In one aspect, a remote desktop session module 1114 can
translate a connection request that is not compatible with a
remote desktop client, a remote desktop server, or a remote
desktop display protocol (e.g., that cannot be understood or
processed by a remote desktop client, a remote desktop server
or a remote desktop display protocol) into session control
commands that are compatible with the remote desktop cli-
ent, the remote desktop server and the remote desktop display
protocol (i.e., that can be understood and processed by remote
desktop client and remote desktop server and that can be
communicated between remote desktop client and remote
desktop server utilizing the remote desktop display protocol).

In some aspects, facilitating an establishment of a remote
desktop session, between a remote desktop client and a

10

15

20

25

30

35

40

45

50

55

60

65

30

remote desktop server, comprises generating a session con-
trol command based on the initial HTTP request. In some
aspects, facilitating an establishment of the remote desktop
session comprises transmitting the session control command
from a remote desktop session module 1114 to a remote
desktop client 1118 and then from the remote desktop client
to a remote desktop server (e.g., 832). For example, the ses-
sion control command may be transmitted to the remote desk-
top server via the remote desktop client 1118 that communi-
cates with remote desktop server using a remote desktop
display protocol. In some aspects, the remote desktop display
protocol comprises at least one of the Microsoft® Remote
Desktop Protocol (RDP), personal computer over internet
protocol (PColP), remote FX (RFX) protocol, remote frame-
buffer (RFB) protocol, independent computing architecture
(ICA), NX protocol, and other suitable remote desktop dis-
play protocols. In some aspects, the RFB protocol comprises
virtual network computing (VNC).

According to certain aspects of the subject technology, a
server such as server 208, 330, 400A,400B (e.g., via aremote
desktop session module 1114) can maintain open connections
between its remote desktop client and one or more remote
desktop servers at all times, allowing single or multiple client
devices to be interactively connected and disconnected to
remote desktop sessions instantly. In some aspects, remote
desktop sessions may never need to be disconnected from the
one or more remote desktop servers, as a server can maintain
active connections to the one or more remote desktop servers.
Of course, a remote machine (e.g., 830) may go down for
reasons that are outside of a related web server’s control;
however, the connection can be maintained as long as the
remote machine is available for remote access. For example,
a remote desktop session module 1114 may continuously
maintain the remote desktop session until the remote desktop
server disconnects from the remote desktop session depend-
ing on the remote desktop server’s idle remote connection
settings. In some aspects, remote desktop sessions estab-
lished utilizing a remote desktop session module 1114 may be
resized and adjusted for best display and user experience to
utilize the full capability of the client devices.

According to various aspects of the subject technology, a
user input module 1116 may receive an input request indi-
rectly from a web browser such as a web browser 810 (e.g.,
via an HTTP request switch 914 of FIG. 9), and convert the
input request into a format recognized by and/or compatible
with remote desktop client 1118 and remote desktop server
832. For example, user input module 1116 receives an input
request that was transmitted utilizing a request-response pro-
tocol from a web browser. In preferred aspects, the request-
response protocol may comprise hypertext transfer protocol
(HTTP). In another aspect, the request-response protocol
may comprise other suitable request-response protocols. In
some aspects, the input request is received from a web
browser (e.g., 810) via an HTTP request switch (e.g., 914)
that communicates with the web browser. In some aspects, the
input request comprises at least one of a mouse event, a
keyboard event, and a touch event. User input module 1116
may translate the input request that is in a format suitable for
or compatible with the request-response protocol into an
input command (e.g., a remote desktop display protocol input
command) that is suitable for or compatible with the remote
desktop display protocol. The user input module 1116 may
transmit the input command to a remote desktop client 1118,
which may transmit the input command to a remote desktop
server 832. For example, user input module 1116 may facili-
tate transmitting the input command to remote desktop server
832 via remote desktop client 1118 that communicates with

US 9,244,912 B1

31

remote desktop server 832 using the remote desktop display
protocol. In one aspect, an input request is sometimes referred
to as a user input command and vice versa. Please note,
however, if an input request is referred to as an input com-
mand when itis received via HTTP, itis a HT TP request rather
than a command. In one aspect, an input command is some-
times referred to as an input call or a remote desktop input
command and vice versa.

A remote machine 830 (e.g., its remote desktop server 832)
may execute one or more actions based on the input command
and send drawing data, as a result of the executed one or more
actions, to a server such as a web server 820 (e.g., a remote
desktop client wrapper 826 of the server). According to vari-
ous aspects, a remote desktop client 1118 can receive a screen
drawing command transmitted from a remote machine 830
(e.g., its remote desktop server 832) utilizing the remote
desktop display protocol, in response to the input command
transmitted to remote machine 830 (e.g., its remote desktop
server 680 of FIG. 6). In one aspect, a screen drawing com-
mand received from a remote machine may be sometimes
referred to as a drawing command, a remote machine drawing
command, or a remote desktop drawing command received
from a remote machine and vice versa. The drawing com-
mand module 1112 may then receive the screen drawing
command from the remote desktop client 1118 connected to
the remote machine 830. For example, a drawing command
module 1112 can receive the screen drawing command from
aremote machine 830 (e.g., its remote desktop server 832) via
a remote desktop client 1118 that communicates with the
remote machine 830 (e.g., its remote desktop server 832)
using the remote desktop display protocol.

According to certain aspects, a drawing command module
1112 may convert a screen drawing command into a format
recognized by and/or compatible with a web browser (e.g.,
810). For example, a drawing command module 1112 may
translate a screen drawing command that is suitable for or
compatible with a remote desktop client, a remote desktop
server and a remote desktop display protocol, into a graphics
drawing command that is compatible with the web server
820, such as a windows graphics (abstract window toolkit)
API command. In some aspects, translating the screen draw-
ing command can include calculating new, and/or adjusting
received drawing command parameters, and/or making
adjustments to the received bitmap data, such as, but not
limited to, converting the 16-bit red-green-blue (RGB) 5-6-5
color format into a 32-bit alpha-red-green-blue (ARGB) 8-8-
8-8 format. In some aspects, drawing command module 1112
may execute the graphics drawing command (e.g., windows
graphics API command) to draw into an already created
image bitmap, (e.g., the off-screen memory bitmap 922) of
the drawing commands buffer (e.g., 920 in FIG. 9) at the web
server (e.g., 820 in FIG. 8). In one aspect, windows graphics
API command is sometimes referred to as windows graphics
command or windows graphics drawing command. In one
aspect, the off-screen bitmap may be a storage or memory
location that is a part of a drawing commands buffer (e.g.,
920) accessible by an asynchronous HTTP handler (e.g.,
912). In one aspect, the size of an off-screen bitmap may
represent the size of a remote session. Stated in another way,
the size of an off-screen bitmap may represent the size of the
remote desktop, or an off-screen bitmap may be a bitmap
representation of an entire image of a remote desktop.

Preferred embodiments of the present disclosure may, in
essence, translate a request in HTTP to a command in a
remote desktop display protocol and vice versa (e.g., translate
requests/responses transmitted/received via HTTP to com-
mands transmitted/received via a remote desktop display pro-

10

15

20

25

30

35

40

45

50

55

60

65

32

tocol, and vice versa) for a remote session between a client
device and a remote machine. For example, the input request
from the web browser such as the windows web browser 810
may be translated into the input command (e.g., a remote
desktop input command) that is suitable for or compatible
with the remote desktop display protocol and is received by
remote desktop server 832 via remote desktop client 1118.
The screen drawing command transmitted from the remote
machine 830 (e.g., in response to the input command) utiliz-
ing the remote desktop display protocol may be translated
into the graphics drawing command that is compatible with
the web server 820, such as a windows graphics (abstract
window toolkit) API command. In some aspects, HTTP is a
pull protocol while a remote desktop display protocol may be
apush protocol. In some aspects, a drawing command in push
protocol may be translated into a drawing update (or a draw-
ing response) in pull protocol during a remote session
between a client device and a remote machine.

With continued reference to FIG. 11, a drawing command
module 1112, when drawing into the off-screen bitmap, may
transmit pixel data to the off-screen bitmap. In some aspects,
the pixel data is used to update a portion of the off-screen
bitmap (e.g., an off-screen memory bitmap). In some aspects,
a drawing command module 1112 may transmit the pixel data
to the off-screen bitmap so that the updated portion of the
off-screen bitmap may be stored and/or converted to an image
file.

According to certain aspects, a drawing command module
1112 can generate one or more coordinates corresponding to
the updated portion of the off-screen bitmap (e.g., an image
drawn into the off-screen bitmap when the graphics drawing
command is executed). For example, the one or more coor-
dinates may identify the locations where the corresponding
image bitmap is to be executed on the canvas of a web
browser. In one example, the one or more coordinates may be
extracted or copied from the graphics drawing command. A
drawing command module 1112 may also transmit the one or
more coordinates to a drawing coordinates queue 924 in F1G.
9 that is a part of a drawing commands buffer (e.g., 920). In
some aspects, a drawing command module 1112 may trans-
mit the one or more coordinates to the drawing coordinates
queue so that the one or more coordinates may be stored in the
drawing coordinates queue. Thus, a drawing command mod-
ule 1112 may update “drawing” region coordinates in the
drawing commands buffer. In some aspects, a drawing com-
mand module 1112 may transmit a notification signal to a
drawing requests buffer (e.g., 920) of an asynchronous HTTP
handler (e.g., 912). In some aspects, the notification signal/
message may indicate that the image bitmap (e.g., the off-
screen memory bitmap) has been updated.

In one advantageous aspect, a windows web server may
comprise a Microsoft Windows web server. A Microsoft Win-
dows web server may utilize Microsoft’s operating system. In
one advantageous aspect, a web browser is a browser that is
HTMLS5 compatible. In one advantageous aspect, a windows
web browser is a browser that is HTMLS5 compatible.

In another advantageous aspect, a windows API may com-
prise a Microsoft Windows API. A Microsoft Windows web
API may be operable in Microsoft’s operating system.

In yet another advantageous aspect, a windows web
browser may comprise a Microsoft Windows web browser
(e.g., Windows Internet Explorer). A Microsoft Windows
web browser may be operable in Microsoft’s operating sys-
tem.

In yet another advantageous aspect, an MVC application
may comprise an ASPNET MVC application that may be
executable in Microsoft’s operating system.

US 9,244,912 B1

33

In yet another advantageous aspect, a windows graphics
drawing command may comprise a Microsoft Windows
graphics drawing command. A Microsoft Windows graphics
drawing command may be executable in Microsoft’s operat-
ing system.

In yet another advantageous aspect, a windows image file
may comprise a Microsoft Windows image file. A Microsoft
Windows image file may be usable in Microsoft’s operating
system.

In yet another advantageous aspect, a windows graphics
API command may comprise a Microsoft Windows graphics
API command. A Microsoft Windows graphics API com-
mand may be executable in Microsoft’s operating system.

In yet another advantageous aspect, a windows script cli-
ent’s image onload handler (e.g., 1038) may comprise a Java-
Script client’s image onload handler.

In one aspect, a windows application, file, command, inter-
face, operating system or device (e.g., a windows web server,
a windows API, a windows graphics drawing command, a
windows image file, a windows script client) is adapted to
provide windowing functionality. In one aspect, windowing
functionality may be adapted to provide an enclosed, rectan-
gular window area on a display screen. In one aspect, win-
dowing functionality may be adapted to provide a window
that is a logical view of a file. This may allow a user to view
different portions of a file when the user moves the window. In
one aspect, a windows operating system is an operating sys-
tem adapted to provide windowing functionality. In one
example, a windows operating system comprises a Microsoft
Windows operating system. In one aspect, a windows appli-
cation, file, command, interface or device is adapted to utilize,
or is operable with, a windows operating system.

In yet another advantageous aspect, a client device (e.g.,
client device 802 of FIG. 8) is a computing machine that
utilizes Microsoft’s operating system.

In one aspect, the subject technology may utilize other
windows systems and other operating systems.

In one aspect, each of a client device and a remote machine
is an end machine for communication, in that each is an end
point of communication (as shown in FIGS. 2A and 2B). A
server may be also an end machine as shown in FIG. 2B.

In one aspect, a transcoding server may comprise a web
server, an HTTP handler may comprise an HTTP handler, a
long polling handler may comprise an asynchronous handler
and/or an HTTP request switch, a web application container
may comprise an ASPNET MVC Application, a remote desk-
top client adaptor may comprise a remote desktop client
wrapper, a drawing coordinates pool may comprise a drawing
coordinated queue, a drawing command handler may com-
prise a drawing command module a remote desktop client
manager may comprise a remote desktop session module, and
a user input handler may comprise a user input module.

FIG. 12 is a conceptual block diagram illustrating an
example of a computing system 1200 useful for embodiments
of the present disclosure. System 1200 may be, for example,
a client device (e.g., 202 or 310), a server (e.g., 208, 330,
400A or 400B) or a remote machine (e.g., 204, 320 or 690).
The system 1200 may include a processing system 1202. The
processing system 1202 is capable of communication with a
receiver 1206 and a transmitter 1208 through a bus 1204 or
other structures or devices. It should be understood that com-
munication means other than busses can be utilized with the
disclosed configurations. The processing system 1202 can
generate audio, video, multimedia, and/or other types of data
to be provided to the transmitter 1209 for communication. In

10

15

20

25

30

35

40

45

50

55

60

65

34

addition, audio, video, multimedia, and/or other types of data
can be received at the receiver 1206, and processed by the
processing system 1202.

The processing system 1202 may include a general-pur-
pose processor or a specific-purpose processor for executing
instructions and may include a machine-readable medium
1219, such as a volatile or non-volatile memory, for storing
data and/or instructions for software programs. The instruc-
tions, which may be stored in a machine-readable medium
1210 and/or 1219, may be executed by the processing system
1202 to control and manage access to the various networks, as
well as provide other communication and processing func-
tions. The instructions may also include instructions executed
by the processing system 1202 for various user interface
devices, such as a display 1212 and a keypad 1214. The
processing system 1202 may include an input port 1222 and
an output port 1224. Each of the input port 1222 and the
output port 1224 may include one or more ports. The input
port 1222 and the output port 1224 may be the same port (e.g.,
a bi-directional port) or may be different ports.

The processing system 1202 may be implemented using
software, hardware, or a combination of both. By way of
example, the processing system 102 may be implemented
with one or more processors. A processor may be a general-
purpose microprocessor, a microcontroller, a digital signal
processor (DSP), an application specific integrated circuit
(ASIC), afield programmable gate array (FPGA), a program-
mable logic device (PLD), a controller, a state machine, gated
logic, discrete hardware components, and/or any other suit-
able device that can perform calculations or other manipula-
tions of information.

A machine-readable medium can be one or more machine-
readable media. Software shall be construed broadly to mean
instructions, data, or any combination thereof, whether
referred to as software, firmware, middleware, microcode,
hardware description language, or otherwise. Instructions
may include code (e.g., in source code format, binary code
format, executable code format, or any other suitable format
of code).

Machine-readable media (e.g., 1219) may include storage
integrated into a processing system, such as might be the case
with an application specific integrated circuit (ASIC).
Machine-readable media (e.g., 1210) may also include stor-
age external to a processing system, such as a random access
memory (RAM), a flash memory, a read only memory
(ROM), a programmable read-only memory (PROM), an
erasable PROM (EPROM), registers, a hard disk, a removable
disk, a CD-ROM, a DVD, or any other suitable storage
device. In addition, machine-readable media may include a
transmission line or a carrier wave that encodes a data signal.
Those skilled in the art will recognize how best to implement
the described functionality for the processing system 1202.
According to one aspect of the disclosure, a machine-read-
able medium is a computer-readable medium encoded or
stored with instructions and is a computing element, which
defines structural and functional interrelationships between
the instructions and the rest of the system, which permit the
instructions’ functionality to be realized. In one aspect, a
machine-readable medium is a non-transitory machine-read-
able medium, a machine-readable storage medium, or a non-
transitory machine-readable storage medium. In one aspect, a
computer-readable medium is a non-transitory computer-
readable medium, a computer-readable storage medium, or a
non-transitory computer-readable storage medium. A non-
transitory machine-readable medium (or a non-transitory
computer-readable medium) may include, for example, one
or more volatile memories and/or one or more non-volatile

US 9,244,912 B1

35

memories. Instructions may be executable, for example, by a
client device, a server, a remote machine, or by a processing
system of a client device, a server, or a remote machine.
Instructions can be, for example, a computer program includ-
ing code.

An interface 1216 may be any type of interface and may
reside between any of the components shown in FIG. 12. An
interface 1216 may also be, for example, an interface to the
outside world (e.g., an Internet network interface). A trans-
ceiver block 1207 may represent one or more transceivers,
and each transceiver may include a receiver 1206 and a trans-
mitter 1209. A functionality implemented in a processing
system 1202 may be implemented in a portion of a receiver
1206, a portion of a transmitter 1209, a portion of a machine-
readable medium 1210, a portion of a display 1212, a portion
of'akeypad 1214, or a portion of an interface 1216, and vice
versa.

FIG. 13 A illustrates a block diagram representing a method
1300 of accessing and controlling a remote desktop from a
web browser (e.g., 312 or 500) via a transcoding server (e.g.,
208, 330, 400A or 400B) according to certain aspects of the
present disclosure. FIG. 13B illustrates a continuation of the
method 1300. For method 1300, a web browser having 2D
rendering capabilities, e.g., an HTMLS5 compatible web
browser, is provided, as described at 1302. Input requests can
be received at the transcoding server for controlling the
remote desktop, as described at 1306. The input requests can
be translated from the protocol of the web browser, e.g.,
preferably HTTP, into the protocol of the remote desktop
server associated with the remote desktop, as described at
1308. The input commands can then be provided to the
remote machine (which may include a remote desktop server)
as described at 1310.

Referring to FIG. 13B and continuing with the description
of method 1300, drawing commands and coordinates, e.g., of
dirty regions, can be received by the transcoding server from
the remote desktop server, as described at 1312. In response,
the drawing commands and coordinates can be translated
from the protocol of the remote desktop server to the protocol
of the web browser, as described at 1314. The transcoding
server can respond by drawing or generating an image of the
remote desktop, as described at 1316. The image and the
corresponding coordinates can be linked or unionized, as
described at 1318. A drawing request from the web browser
can be responded to, as described at 1320, by sending the
image and coordinates to the web browser for display, as
described at 1322. Accordingly, method 1300 may beused for
controlling and accessing a remote desktop session via HT TP,
and such control can be in real-time.

An exemplary embodiment of a method of accessing and
controlling a remote desktop of a remote machine (e.g., 204,
320 or 690) from a web browser (e.g., 312 or 500) via a
transcoding server (e.g., 208, 330, 400A or 400B) may
include the following three steps: step one can happen once,
at the beginning of a session; and steps two and three can
continue interchangeably during the remote desktop session.

The first step can include an initial HTTP request by the
web browser (e.g., a connection request to connect to aremote
machine). For example, an initial HT'TP request is sent by the
web browser, preferably an HTMLS compatible browser. The
web browser receives back a response, which can contain a
script client such as 314 or 500, e.g., JavaScript Ajax client
code. The transcoding server (e.g., Java transcoding server)
can use the connection request to establish a connection to a
remote machine via a remote desktop client. A remote desk-
top client on or used with the Java transcoding server can
establish the connection to a remote machine, which utilizes

10

15

20

25

30

35

40

45

50

55

60

65

36

a remote desktop display protocol. The transcoding server
can function to interface between the HTTP protocol and the
remote desktop display protocol. In one aspect, between the
web browser and the transcoding server, there is no connec-
tion, as HTTP is a connectionless protocol. Instead, there are
only separate requests and responses in HT'TP protocol.

The second step is remote session drawing at the web
browser: On the browser side, the client JavaScript code can
continuously re-send a number of, e.g., four asynchronous
(Ajax) HTTP requests to find out if there are any “dirty”
regions of the remote desktop of the remote machine to (re)
draw. On the Java transcoding server, these drawing requests
are handled as long polling requests, meaning that they will
be responded to only if there is data to be drawn, otherwise
they hang in the drawing requests queue (e.g., 426). In addi-
tion, on the Java transcoding server, the remote session is
drawn into an off-screen Java bitmap in a drawing commands
queue of the transcoding server. In addition, the coordinates
of the drawing command are also appended or added to the
drawing commands queue. This last part also sends a notifi-
cation to the drawing requests queue of the transcoding
server, so that the first waiting request from the drawing
requests queue can be served. In HTTP response to the
browser, the “dirty” drawing image is sent, together with the
drawing coordinates that are stored in one of the HTTP header
sections (known as a cookie). On the browser side, the script
client receives the “dirty” image and the coordinates, and the
script client draws the image into an HTML canvas (e.g., 530)
using coordinates from the cookie. This allows the remote
session from a remote machine (e.g., an image of the remote
desktop of the remote machine) to be drawn, via a Java
transcoding server, to the client’s HTMLS browser.

The third step involves a user input, such as a mouse click,
keystroke, or touch event. On the browser side, the script
client detects, e.g., a mouse event, and sends an HTTP request
to the transcoding server, passing along the X and'Y coordi-
nates of the event. The Java transcoding server receives the
request, sends an empty reply (see, e.g., 720 and 723 in FIG.
7) to close the HTTP request, and then via remote desktop
client adapter, it forwards this request to the remote desktop
client, which sends it via its protocol to the remote machine.
These user input requests can be handled in a standard way,
i.e., not as long polling events, to receive and process user
input. User input can then be sent to the remote machine.

In a preferred aspect, a script client is not installed on the
client device. In other words, a script client does not exist (and
is not pre-installed) on the web browser or onthe client device
prior to the first step described above (e.g., prior to the web
browser connecting to, or sending a request to connect to, the
transcoding server to initiate a remote session with a remote
machine). In a preferred aspect, a client device simply needs
a web browser to initiate accessing and controlling a remote
desktop of a remote machine or to initiate a remote desktop
session with the remote machine. Thus, the client device does
not need software or a browser plug-in for a remote desktop
display protocol. The transcoding server provides the script
client in real time to the web browser via HI'TP once the web
browser requests a connection to a remote machine for a
remote desktop session. The web browser’s connection to the
remote machine is established through the transcoding server,
and the script client is deleted from the client device and the
web browser when the remote desktop session is terminated
or the browser is closed.

Iustration of Method/ Apparatus/Machine Readable Stor-
age Medium for facilitating accessing and controlling a
remote desktop of a remote machine in real time by a web

US 9,244,912 B1

37

browser of a client device via a hypertext transfer protocol
(HTTP) utilizing a transcoding server (described as Clauses).

The subject technology is illustrated, for example, accord-
ing to various aspects described below. Various examples of
aspects of the subject technology are described as numbered
clauses (1, 2, 3, etc.) for convenience. These are provided as
examples, and do not limit the subject technology. Clause 1
below is presented, for example, with reference to the figures
of'the present disclosure, e.g., FIGS. 14A-14C, etc. [t is noted
that any of the dependent clauses may be combined in any
combination, and placed into a respective independent clause,
e.g., clauses 1, 11, and 22. The other clauses can be presented
in a similar manner.

1. A method (see, e.g., method 1400-A of FIG. 14A) of
facilitating accessing and controlling a remote desktop of a
remote machine (see, e.g., 320 of FIG. 3A) in real time by a
web browser (see, e.g., 500 of FIG. 5) at a client device (see,
e.g., 310 in FIG. 3A) via a hypertext transfer protocol (HTTP)
utilizing a transcoding server (see, e.g., 330 of FIG. 3A, the
method comprising:

receiving, at the transcoding server, a remote desktop
drawing command based on an image of the remote desktop
of the remote machine, wherein the remote desktop drawing
command is compatible with a remote desktop display pro-
tocol utilized by the remote machine (see, e.g., item 1402-A
in FIG. 14A);

translating, at the transcoding server, the remote desktop
drawing command into a web browser drawing update that is
compatible with the web browser (see, e.g., item 1404-A in
FIG. 14A); and

facilitating providing the web browser drawing update
from the transcoding server to the web browser of the client
device utilizing HTTP during a remote desktop session
between the client device and the remote machine (see, e.g.,
item 1406-A in FIG. 14A),

wherein the remote desktop display protocol is a push
protocol (see, e.g., item 1408-A in FIG. 14A),

wherein HTTP is a pull protocol (see, e.g., item 1410-A in
FIG. 14A).

2. The method of clause 1, wherein the web browser draw-
ing update comprises an image file and drawing coordinates
for the image file that are recognizable and processable by the
web browser.

3. The method of clause 1, wherein the translating com-
prises:

translating the remote desktop drawing command into a
Java graphics drawing command;

updating a portion of a Java bitmap using the Java graphics
drawing command, wherein the updated portion of the Java
bitmap represents a portion of an entire image of the remote
desktop;

creating an image file from the Java bitmap; and

generating drawing coordinates for the image file,

wherein the web browser drawing update comprises the
image file and the drawing coordinates for the image file,

wherein the facilitating providing comprises placing the
drawing coordinates into an HTTP header,

wherein utilizing HT'TP comprises using an HT TP handler,

wherein the transcoding server is a Java transcoding server
that is configured to provide an application framework for
hosting one or more web applications.

4. The method of clause 1, wherein the translating com-
prises:

translating the remote desktop drawing command into a
graphics drawing command that is compatible with the
transcoding server, wherein the graphics drawing command
includes coordinates;

20

25

30

35

40

45

50

38

extracting the coordinates from the graphics drawing com-
mand;

updating at least a portion of an oft-screen bitmap based on
the graphics drawing command, wherein the at least a portion
of the off-screen bitmap is associated with the coordinates,

wherein the off-screen bitmap is based on the image of the
remote desktop;

creating an image file based on the at least a portion of the
off-screen bitmap; and

wherein the web browser drawing update comprises the
image file and the coordinates.

5. The method of clause 1, wherein the web browser is an
HTMLS5 compatible web browser.

6. The method of clause 1, comprising:

receiving a user input request from the web browser, using
HTTP,

translating the user input request into an input command
compatible with the remote desktop display protocol; and

providing the input command to the remote desktop client
for accessing and controlling the remote desktop of the
remote machine during the remote desktop session,

wherein the web browser drawing update comprises an
image file and drawing coordinates for the image file that are
recognizable and processable by the web browser,

wherein the image file and the drawing coordinates repre-
sent a portion of an entire image of the remote desktop that
has been changed in response to the input command.

7. The method of clause 6, wherein the user input request
comprises at least one of amouse event, akeyboard event, and
a touch event.

8. The method of clause 1, wherein the remote desktop
drawing command comprises remote desktop drawing com-
mand parameters and bitmap data received from a remote
desktop server of the remote machine,

wherein the translating comprises one or more of: calcu-
lating new drawing command parameters based on the remote
desktop drawing command parameters; adjusting the remote
desktop drawing command parameters; and making adjust-
ments to the bitmap data.

9. The method of clause 1, wherein the remote desktop
drawing command comprises remote desktop drawing com-
mand parameters and bitmap data received from a remote
desktop server of the remote machine,

wherein the translating comprises making adjustments to
the bitmap data,

wherein the making adjustments comprises converting a
16-bit red-green-blue (RGB) 5-6-5 color format into a 32-bit
alpha-red-green-blue (ARGB) 8-8-8-8 format.

10. The method of clause 1, wherein the transcoding server
is an intermediary between the remote machine and the client
device, and wherein the transcoding server is physically sepa-
rate from the remote machine.

11. A machine-readable storage medium (see, e.g.,
machine-readable storage medium 1400-B of FIG. 14B)
encoded with instructions executable by a processing system
to perform a method of facilitating accessing and controlling
a remote desktop of a remote machine (see, e.g., 320 of FIG.
3A) in real time by a web browser (see, e.g., 500 of FIG. 5) at
a client device (see, e.g., 310 of FIG. 3A) via a hypertext
transfer protocol (HTTP) utilizing a transcoding server (see,
e.g., 330 of FIG. 3A), the instructions comprising code for:

receiving, at the transcoding server, a remote desktop
drawing command based on an image of the remote desktop
of the remote machine, wherein the remote desktop drawing
command is compatible with a remote desktop display pro-
tocol utilized by the remote machine (see, e.g., item 1402-B in
FIG. 14B);

US 9,244,912 B1

39

translating, at the transcoding server, the remote desktop
drawing command into a web browser drawing update that is
compatible with the web browser (see, e.g., item 1404-A in
FIG. 14B); and

facilitating providing the web browser drawing update
from the transcoding server to the web browser of the client
device using HTTP during a remote desktop session between
the client device and the remote machine (see, e.g., item
1406-A in FIG. 14B),

wherein the remote desktop display protocol is a push
protocol (see, e.g., item 1408-A in FIG. 14B), and

wherein HTTP is a pull protocol (see, e.g., item 1410-A in
FIG. 14B).

12. The machine-readable storage medium of clause 11,
wherein the web browser drawing update comprises an image
file and drawing coordinates for the image file that are recog-
nizable and processable by the web browser.

13. The machine-readable storage medium of clause 11,
wherein the translating comprises:

translating the remote desktop drawing command into a
Java graphics drawing command;

updating a portion of a Java bitmap using the Java graphics
drawing command, wherein the updated portion of the Java
bitmap represents a portion of an entire image of the remote
desktop;

creating an image file from the Java bitmap; and

generating drawing coordinates for the image file,

wherein the web browser drawing update comprises the
image file and the drawing coordinates for the image file,

wherein the facilitating providing comprises placing the
drawing coordinates into an HTTP header,

wherein utilizing HT'TP comprises using an HT TP handler,

wherein the transcoding server is a Java transcoding server
that is configured to provide an application framework for
hosting one or more web applications.

14. The machine-readable storage medium of clause 11,
wherein the translating comprises:

translating the remote desktop drawing command into a
graphics drawing command that is compatible with the
transcoding server, wherein the graphics drawing command
includes coordinates;

extracting the coordinates from the graphics drawing com-
mand;

updating at least a portion of an oft-screen bitmap based on
the graphics drawing command, wherein the at least a portion
of the off-screen bitmap is associated with the coordinates,

wherein the off-screen bitmap is based on the image of the
remote desktop;

creating an image file based on the at least a portion of the
off-screen bitmap; and

wherein the web browser drawing update comprises the
image file and the coordinates.

15. The machine-readable storage medium of clause 11,
wherein the web browser is an HTMLS5 compatible web
browser.

16. The machine-readable storage medium of clause 11,
wherein the instructions comprise code for:

receiving a user input request from the web browser, using
HTTP,

translating the user input request into an input command
compatible with the remote desktop display protocol; and

providing the input command to the remote desktop client
for accessing and controlling the remote desktop of the
remote machine during the remote desktop session;

wherein the web browser drawing update comprises an
image file and drawing coordinates for the image file that are
recognizable and processable by the web browser; and

10

15

20

25

30

35

40

45

50

55

60

65

40

wherein the image file and the drawing coordinates repre-
sent a portion of an entire image of the remote desktop that
has been changed in response to the input command.

17. The machine-readable storage medium of clause 16,
wherein the user input request comprises at least one of a
mouse event, a keyboard event, and a touch event.

18. The machine-readable storage medium of clause 11,
wherein the remote desktop drawing command comprises
remote desktop drawing command parameters and bitmap
data received from a remote desktop server of the remote
machine,

wherein the translating comprises one or more of: calcu-
lating new drawing command parameters based on the remote
desktop drawing command parameters; adjusting the remote
desktop drawing command parameters; and making adjust-
ments to the bitmap data.

19. The machine-readable storage medium of clause 11,
wherein the remote desktop drawing command comprises
remote desktop drawing command parameters and bitmap
data received from a remote desktop server of the remote
machine,

wherein the translating comprises making adjustments to
the bitmap data,

wherein the making adjustments comprises converting a
16-bit red-green-blue (RGB) 5-6-5 color format into a 32-bit
alpha-red-green-blue (ARGB) 8-8-8-8 format.

20. The machine-readable storage medium of clause 11,
wherein the transcoding server is an intermediary between
the remote machine and the client device, and wherein the
transcoding server is physically separate from the remote
machine.

21. A computing machine comprising the machine-read-
able storage medium of clause 11, wherein the computing
machine is the transcoding server.

22. An apparatus for facilitating accessing and controlling
a remote desktop of a remote machine (see, e.g., 320 of FIG.
3A) in real time by a web browser (see, 500 of FIG. 5) ata
client device (see, e.g., 310 of FIG. 3A) via a hypertext
transfer protocol (HTTP) utilizing a transcoding server (see,
e.g., 330 of FIG. 3A), the apparatus comprising:

means for receiving a remote desktop drawing command
based on an image of the remote desktop of the remote
machine, wherein the remote desktop drawing command is
compatible with a remote desktop display protocol utilized by
the remote machine (see, e.g., item 1402-C in FIG. 14C);

means for translating the remote desktop drawing com-
mand into a web browser drawing update that is compatible
with the web browser (see, e.g., item 1404-C in FIG. 14C);
and

means for facilitating providing the web browser drawing
update from the transcoding server to the web browser of the
client device utilizing HTTP during a remote desktop session
between the client device and the remote machine (see, e.g.,
item 1406-C in FIG. 14C);

wherein the remote desktop display protocol is a push
protocol (see, e.g., item 1408-C in FIG. 14C); and

wherein HTTP is a pull protocol (see, e.g., item 1410-C in
FIG. 14C).

23. The apparatus of clause 22, wherein the web browser
drawing update comprises an image file and drawing coordi-
nates for the image file that are recognizable and processable
by the web browser.

24. The apparatus of clause 22, wherein the means for
translating comprises:

means for translating the remote desktop drawing com-
mand into a Java graphics drawing command;

US 9,244,912 B1

41

means for updating a portion of a Java bitmap using the
Java graphics drawing command, wherein the updated por-
tion of the Java bitmap represents a portion of an entire image
of the remote desktop;

means for creating an image file from the Java bitmap; and

means for generating drawing coordinates for the image
file,

wherein the web browser drawing update comprises the
image file and the drawing coordinates for the image file,

wherein the means for facilitating providing comprises
means for placing the drawing coordinates into an HTTP
header,

wherein utilizing HT'TP comprises utilizing an HT'TP han-
dler, and

wherein the transcoding server is a Java transcoding server
that is configured to provide an application framework for
hosting one or more web applications.

25. The apparatus of clause 22, wherein the means for
translating comprises:

means for translating the remote desktop drawing com-
mand into a graphics drawing command that is compatible
with the transcoding server, wherein the graphics drawing
command includes coordinates;

means for extracting the coordinates from the graphics
drawing command;

means for updating at least a portion of an off-screen bit-
map based on the graphics drawing command, wherein the at
least a portion of the off-screen bitmap is associated with the
coordinates, wherein the off-screen bitmap is based on the
image of the remote desktop; and

means for creating an image file based on the at least a
portion of the off-screen bitmap;

wherein the web browser drawing update comprises the
image file and the coordinates.

26. The apparatus of clause 22, wherein the web browser is
an HTMLS compatible web browser.

27. The apparatus of clause 22, comprising:

means for receiving a user input request from the web
browser, using HTTP;

means for translating the user input request into an input
command compatible with the remote desktop display proto-
col; and

means for providing the input command to the remote
desktop client for accessing and controlling the remote desk-
top of the remote machine during the remote desktop session;

wherein the web browser drawing update comprises an
image file and drawing coordinates for the image file that are
recognizable and processable by the web browser; and

wherein the image file and the drawing coordinates repre-
sent a portion of an entire image of the remote desktop that
has been changed in response to the input command.

28. The apparatus of clause 27, wherein the user input
request comprises at least one of a mouse event, a keyboard
event, and a touch event.

29. The apparatus of clause 22, wherein the remote desktop
drawing command comprises remote desktop drawing com-
mand parameters and bitmap data received from a remote
desktop server of the remote machine,

wherein the means for translating comprises one or more
of: means for calculating new drawing command parameters
based on the remote desktop drawing command parameters;
means for adjusting the remote desktop drawing command
parameters; and means for making adjustments to the bitmap
data.

5

10

15

20

25

30

35

40

45

50

55

60

42

30. The apparatus of clause 22, wherein the remote desktop
drawing command comprises remote desktop drawing com-
mand parameters and bitmap data received from a remote
desktop server,

wherein the means for translating comprises means for
making adjustments to the bitmap data of the remote
machine,

wherein the means for making adjustments comprises
means for converting a 16-bit red-green-blue (RGB) 5-6-5
color format into a 32-bit alpha-red-green-blue (ARGB) 8-8-
8-8 format.

31. The apparatus of clause 22, wherein the transcoding
server is an intermediary between the remote machine and the
client device, and wherein the transcoding server is physi-
cally separate from the remote machine.

32. The apparatus of clause 22, wherein the apparatus
comprises the transcoding server.

33. The apparatus of clause 22, wherein the apparatus
comprises a processing system and a memory.

Iustration of Method/ Apparatus/Machine Readable Stor-
age Medium for facilitating conducting a remote desktop
session between a web browser of a client device and aremote
machine via a transcoding server in real time and utilizing
hypertext markup language that supports a two-dimensional
(2D) canvas and dynamic drawing (described as Clauses).

The subject technology is illustrated, for example, accord-
ing to various aspects described below. Various examples of
aspects of the subject technology are described as numbered
clauses (1, 2, 3, etc.) for convenience. These are provided as
examples, and do not limit the subject technology. Clause 1
below is presented, for example, with reference to FIGS.
15A-15C. It is noted that any of the dependent clauses may be
combined in any combination, and placed into a respective
independent clause, e.g., clauses 1, 11, and 22. The other
clauses can be presented in a similar manner.

1. A method (see, e.g., item 1500-A in FIG. 15A) of facili-
tating conducting a remote desktop session between a web
browser of a client device (see, e.g., 310 in FIG. 3A) and a
remote machine (see, e.g., 320) via a transcoding server (see,
e.g., 330) in real time and utilizing hypertext markup lan-
guage that supports a two-dimensional (2D) canvas and
dynamic drawing, the method comprising:

receiving, at the transcoding server, a user input request
from the web browser of the client device for access and
control of the remote machine, wherein the web browser
supports a 2D canvas and dynamic drawing (see, e.g., item
1502-A in FIG. 15A);

translating, at the transcoding server, the user input request
into an input command compatible with a remote desktop
display protocol to be utilized by the transcoding server for
facilitating communication with the remote machine (see,
e.g., item 1504-A in FIG. 15A);

receiving, at the transcoding server, a remote desktop
drawing command from the remote machine in response to
the input command (see, e.g., item 1506-A in FIG. 15A);

translating, at the transcoding server, the remote desktop
drawing command into a drawing update compatible with the
hypertext markup language (see, e.g., item 1508-A in FIG.
15A); and

facilitating providing the drawing update from the
transcoding server to the web browser (see, e.g., item 1510-A
in FIG. 15A);

wherein the transcoding server is an intermediary between
the remote machine and the client device, and wherein the
transcoding server is physically separate from the remote
machine.

US 9,244,912 B1

43

2. The method of clause 1, wherein the translating the
remote desktop drawing command comprises:
translating the remote desktop drawing command into a
Java graphics drawing command;

executing the Java graphics drawing command to update a
portion of a Java bitmap, wherein the Java bitmap rep-
resents an entire image of'a remote desktop of the remote
machine;

generating coordinates for the updated portion of the Java

bitmap based on the updated portion of Java graphics
drawing command;
forming an image file based on the updated portion of Java
bitmap, wherein the image file is compatible with
HTMLS, and

obtaining drawing coordinates for the image file based on
the coordinates for the updated portion of the Java bit-
map, wherein the drawing coordinates are compatible
with HTMLS,

wherein the drawing update comprises the image file and
the drawing coordinates for the image file,

wherein the drawing update represents a portion of the
entire image of the remote desktop,

wherein the web browser temporarily comprises JavaS-
cript client code during the remote desktop session while the
remote desktop session persists;

wherein the method comprises receiving, at the transcod-
ing server, drawing requests from the JavaScript client code
of the web browser,

wherein the facilitating providing the drawing update com-
prises facilitating providing the drawing update from the
transcoding server to the JavaScript client code of the web
browser in response to one of the drawing requests from the
JavaScript client code of the web browser.

3. The method of clause 1, wherein the translating the
remote desktop drawing command comprises:

translating the remote desktop drawing command into a

graphics drawing command compatible with the
transcoding server;

updating a portion of a bitmap based on the graphics draw-

ing command, wherein the updated portion of the bitmap
represents a portion of an entire image of a remote desk-
top of the remote machine that has changed relative to a
previous graphics drawing command;

generating coordinates for the updated portion of the bit-

map;

forming an image file based on the updated portion of the

bitmap, wherein the image file is HTMLS5 compatible;
and

obtaining drawing coordinates for the image file, wherein

the drawing coordinates are compatible with HTMLS5,
wherein the drawing update comprises the image file and
the drawing coordinates for the image file,

wherein the method comprises receiving, at the transcod-
ing server, drawing requests from the web browser,

wherein the facilitating providing the drawing update com-
prises facilitating providing the drawing update from the
transcoding server to the web browser in response to one of
the drawing requests from the web browser.

4. The method of clause 1, wherein the transcoding server
comprises a remote desktop client adapter configured to
translate the user input request into the input command com-
patible with the remote desktop display protocol and to trans-
late the remote desktop drawing command into the graphics
drawing command.

5. The method of clause 1, comprising receiving long poll-
ing HTTP requests from the web browser, wherein the long
polling HTTP requests comprise drawing requests.

10

15

20

25

30

35

40

45

50

55

60

65

44

6. The method of clause 1, comprising receiving from the
web browser an initial HTTP request comprising a uniform
resource locator (URL) of the remote machine.
7. The method of clause 6, comprising facilitating provid-
ing a script client code to the web browser in response to the
initial HTTP request for the URL of the remote machine,
wherein the script client code is compatible with HTMLS.
8. The method of clause 1, wherein the remote desktop
drawing command is compatible with the remote desktop
display protocol, wherein the remote desktop display proto-
col is a push protocol, and wherein the facilitating providing
the drawing update comprises facilitating providing the draw-
ing update using HTTP that is a pull protocol.
9. The method of clause 1, wherein dynamic drawing com-
prises drawing in real time a portion of the 2D canvas, rather
than drawing the entire 2D canvas, in response to one or more
drawing requests of a script client of the web browser.
10. The method of clause 1, wherein the 2D canvas is
updatable by a portion at a time according to a set of coordi-
nates.
11. A machine-readable storage medium (see, e.g., 1210,
1219 in FIG. 12) encoded with instructions executable by a
processing system (see, e.g., 1202) to perform a method of
facilitating conducting a remote desktop session between a
web browser of a client device (see, e.g., 310 in FIG. 3A) and
a remote machine (see, e.g., 320) via a transcoding server
(see, e.g., 330) in real time and utilizing hypertext markup
language that supports a two-dimensional (2D) canvas and
dynamic drawing, the instructions comprising code for:
receiving, at the transcoding server, a user input request
from the web browser of the client device for access and
control of the remote machine, wherein the web browser
supports a 2D canvas and dynamic drawing (see, e.g., item
1502-B in FIG. 15B);
translating, at the transcoding server, the user input request
into an input command compatible with a remote desktop
display protocol to be utilized by the transcoding server for
facilitating communication with the remote machine (see,
e.g., item 1504-B in FIG. 15B);
receiving, at the transcoding server, a remote desktop
drawing command from the remote machine in response to
the input command (see, e.g., item 1506-B in FIG. 15B);
translating, at the transcoding server, the remote desktop
drawing command into a drawing update compatible with the
hypertext markup language (see, e.g., item 1508-B in FIG.
15B); and
facilitating providing the drawing update from the
transcoding server to the web browser (see, e.g., item 1510-B
in FIG. 15B);
wherein the transcoding server is an intermediary between
the remote machine and the client device, and wherein the
transcoding server is physically separate from the remote
machine.
12. The machine-readable storage medium of clause 11,
wherein the translating the remote desktop drawing com-
mand comprises:
translating the remote desktop drawing command into a
Java graphics drawing command;

executing the Java graphics drawing command to update a
portion of a Java bitmap, wherein the Java bitmap rep-
resents an entire image of a remote desktop of the remote
machine;
generating coordinates for the updated portion of the Java
bitmap based on the Java graphics drawing command;

forming an image file based on the updated portion of the
Java bitmap, wherein the image file is compatible with
HTMLS; and

US 9,244,912 B1

45

obtaining drawing coordinates for the image file based on
the coordinates for the updated portion of the Java bit-
map, wherein the drawing coordinates are compatible
with HTMLS,

wherein the drawing update comprises the image file and
the drawing coordinates for the image file,

wherein the drawing update represents a portion of the
entire image of the remote desktop,

wherein the web browser temporarily comprises JavaS-
cript client code during the remote desktop session while the
remote desktop session persists;

wherein the method comprises receiving, at the transcod-
ing server, drawing requests from the JavaScript client code
of the web browser,

wherein the facilitating providing the drawing update com-
prises facilitating providing the drawing update from the
transcoding server to the JavaScript client code of the web
browser in response to one of the drawing requests from the
JavaScript client code of the web browser.

13. The machine-readable storage medium of clause 11,
wherein the translating the remote desktop drawing com-
mand comprises:

translating the remote desktop drawing command into a

graphics drawing command compatible with the
transcoding server;

updating a portion of a bitmap based on the graphics draw-

ing command, wherein the updated portion of the bitmap
represents a portion of an entire image of a remote desk-
top of the remote machine that has changed relative to a
previous graphics drawing command;

generating coordinates for the updated portion of the bit-

map;

forming an image file based on the updated portion of the

bitmap, wherein the image file is HTMLS5 compatible;
and

obtaining drawing coordinates for the image file, wherein

the drawing coordinates are compatible with HTMLS5,
wherein the drawing update comprises the image file and
the drawing coordinates for the image file,

wherein the method comprises receiving, at the transcod-
ing server, drawing requests from the web browser, and

wherein the facilitating providing the drawing update com-
prises facilitating providing the drawing update from the
transcoding server to the web browser in response to one of
the drawing requests from the web browser.

14. The machine-readable storage medium of clause 11,
wherein the transcoding server comprises a remote desktop
client adapter configured to translate the user input request
into the input command compatible with the remote desktop
display protocol and to translate the remote desktop drawing
command into the graphics drawing command.

15. The machine-readable storage medium of clause 11,
comprising code for receiving long polling HTTP requests
from the web browser, wherein the long polling HTTP
requests comprise drawing requests.

16. The machine-readable storage medium of clause 11,
comprising code for receiving from the web browser an initial
HTTP request comprising a uniform resource locator (URL)
of the remote machine.

17. The machine-readable storage medium of clause 16,
comprising code for facilitating providing a script client code
to the web browser in response to the initial HTTP request for
the URL of'the remote machine, wherein the script client code
is compatible with HTMLS.

18. The machine-readable storage medium of clause 11,
wherein the remote desktop drawing command is compatible
with the remote desktop display protocol, wherein the remote

25

30

35

40

45

55

65

46

desktop display protocol is a push protocol, and wherein the
facilitating providing the drawing update comprises facilitat-
ing providing the drawing update using HTTP that is a pull
protocol.

19. The machine-readable storage medium of clause 11,
wherein dynamic drawing comprises drawing in real time a
portion of the 2D canvas, rather than drawing the entire 2D
canvas, inresponse to one or more drawing requests ofa script
client of the web browser.

20. The machine-readable storage medium of clause 11,
wherein the 2D canvas is updatable by a portion at a time
according to a set of coordinates.

21. A computing machine comprising the machine-read-
able storage medium of clause 11, wherein the computing
machine is the transcoding server.

22. An apparatus (see, e.g., item 1500-C in FIG. 15C) for
facilitating conducting a remote desktop session between a
web browser of a client device (see, e.g., 310 in FIG. 3A) and
a remote machine (see, e.g., 320) via a transcoding server
(see, e.g., 330) in real time and utilizing hypertext markup
language that supports a two-dimensional (2D) canvas and
dynamic drawing, the apparatus comprising:

means for receiving a user input request from the web
browser of the client device for access and control of the
remote machine, wherein the web browser supports a 2D
canvas and dynamic drawing (see, e.g., item 1502-C in FIG.
150);

means for translating the user input request into an input
command compatible with a remote desktop display protocol
to be utilized by the transcoding server for facilitating com-
munication with the remote machine (see, e.g., item 1504-C
in FIG. 15C);

means for receiving a remote desktop drawing command
from the remote machine in response to the input command
(see, e.g., item 1506-C in FIG. 15C);

means for translating the remote desktop drawing com-
mand into a drawing update compatible with the hypertext
markup language (see, e.g., item 1508-C in FIG. 15C); and

means for facilitating providing the drawing update from
the transcoding server to the web browser (see, e.g., item
1510-C in FIG. 150);

wherein the transcoding server is an intermediary between
the remote machine and the client device, and wherein the
transcoding server is physically separate from the remote
machine.

23. The apparatus of clause 22, wherein the means for
translating the remote desktop drawing command comprises:

means for translating the remote desktop drawing com-

mand into a Java graphics drawing command;

means for executing the Java graphics drawing command

to update a portion of a Java bitmap, wherein the Java
bitmap represents an entire image of a remote desktop of
the remote machine;

means for generating coordinates for the updated portion

of the Java bitmap based on the Java graphics drawing
command;

means for forming an image file based on the updated

portion of the Java bitmap, wherein the image file is
compatible with HTMLS; and

means for obtaining drawing coordinates for the image file

based on the coordinates for the updated portion of the
Java bitmap, wherein the drawing coordinates are com-
patible with HTMLS,

wherein the drawing update comprises the image file and
the drawing coordinates for the image file,

wherein the drawing update represents a portion of the
entire image of the remote desktop,

US 9,244,912 B1

47

wherein the web browser temporarily comprises JavaS-
cript client code during the remote desktop session while the
remote desktop session persists,

wherein the apparatus comprises means for receiving
drawing requests from the JavaScript client code of the web
browser,

wherein the means for facilitating providing the drawing
update comprises means for facilitating providing the draw-
ing update from the transcoding server to the JavaScript client
code of the web browser in response to one of the drawing
requests from the JavaScript client code of the web browser.

24. The apparatus of clause 22, wherein the means for
translating the remote desktop drawing command comprises:

means for translating the remote desktop drawing com-

mand into a graphics drawing command compatible
with the transcoding server;

means for updating a portion of a bitmap based on the

graphics drawing command, wherein the updated por-
tion of the bitmap represents a portion of an entire image
of a remote desktop of the remote machine that has
changed relative to a previous graphics drawing com-
mand;

means for generating coordinates for the updated portion

of the bitmap;

means for forming an image file based on the updated

portion of the bitmap, wherein the image file is HTML5
compatible; and

means for obtaining drawing coordinates for the image file,

wherein the drawing coordinates are compatible with
HTMLS,

wherein the drawing update comprises the image file and
the drawing coordinates for the image file,

wherein the apparatus comprises means for receiving
drawing requests from the web browser,

wherein the means for facilitating providing the drawing
update comprises means for facilitating providing the draw-
ing update from the transcoding server to the web browser in
response to one of the drawing requests from the web
browser.

25. The apparatus of clause 22, wherein the transcoding
server comprises a remote desktop client adapter configured
to translate the user input request into the input command
compatible with the remote desktop display protocol and to
translate the remote desktop drawing command into the
graphics drawing command.

26. The apparatus of clause 22, comprising means for
receiving long polling HTTP requests from the web browser,
wherein the long polling HTTP requests comprise drawing
requests.

27. The apparatus of clause 22, comprising means for
receiving from the web browser an initial HTTP request com-
prising a uniform resource locator (URL) of the remote
machine.

28. The apparatus of clause 27, comprising means for
facilitating providing a script client code to the web browser
in response to the initial HTTP request for the URL of the
remote machine, wherein the script client code is compatible
with HTMLS.

29. The apparatus of clause 22, wherein the remote desktop
drawing command is compatible with the remote desktop
display protocol, wherein the remote desktop display proto-
col is a push protocol, and wherein the means for facilitating
providing the drawing update comprises means for facilitat-
ing providing the drawing update using HTTP that is a pull
protocol.

30. The apparatus of clause 22, wherein dynamic drawing
comprises drawing in real time a portion of the 2D canvas,

10

15

20

25

30

35

40

45

50

55

60

65

48

rather than drawing the entire 2D canvas, in response to one or
more drawing requests of a script client of the web browser.

31. The apparatus of clause 22, wherein the 2D canvas is
updatable by a portion at a time according to a set of coordi-
nates.

32. The apparatus of clause 22, wherein the apparatus
comprises the transcoding server.

33. The apparatus of clause 22, wherein the apparatus
comprises a processing system and a memory.

Iustration of Method/ Apparatus/Machine Readable Stor-
age Medium for facilitating a remote desktop session
between a web browser of a client device and a remote
machine through a transcoding server, utilizing hypertext
transfer protocol (HTTP) headers of HTTP for remote desk-
top session drawing (described as Clauses).

The subject technology is illustrated, for example, accord-
ing to various aspects described below. Various examples of
aspects of the subject technology are described as numbered
clauses (1, 2, 3, etc.) for convenience. These are provided as
examples, and do not limit the subject technology. It is noted
that any of the dependent clauses may be combined in any
combination, and placed into a respective independent clause,
e.g., clauses 1, 11, and 22. Clause 1 below is presented, for
example, with reference to FIGS. 16 A-16C. The other clauses
can be presented in a similar manner.

1. A method (see, e.g., item 1600-A in FIG. 16A) of facili-
tating a remote desktop session between a web browser of a
client device (see, e.g., 310 in FIG. 3A) and a remote machine
(see, e.g., 320) through a transcoding server (see, e.g., 330),
utilizing hypertext transfer protocol (HTTP) headers of
HTTP for remote desktop session drawing, the method com-
prising:

receiving, at the transcoding server, drawing requests from
the web browser of the client device (see, e.g., item 1602-A in
FIG. 16A);

receiving, at the transcoding server, a remote desktop
drawing command from the remote machine using a remote
desktop display protocol, wherein the remote desktop draw-
ing command is based on an image of a remote desktop of the
remote machine (see, e.g., item 1604-A in FIG. 16A);

translating, at the transcoding server, the remote desktop
drawing command into a display image and drawing coordi-
nates for the display image (see, e.g., item 1606-A in FIG.
16A);

placing, at the transcoding server, the drawing coordinates
into an HTTP response header (see, e.g., item 1608-A in FIG.
16A); and

in response to at least one of the drawing requests, facili-
tating providing the display image and the drawing coordi-
nates together to the web browser in a single HTTP response,
for drawing the display image of the remote desktop at the
web browser, wherein the single HTTP response comprises
the HTTP response header (see, e.g., item 1610-A in FIG.
16A),

wherein the remote desktop display protocol is a push
protocol, and

wherein HTTP is a pull protocol.

2. The method of clause 1, wherein the translating com-
prises:

translating the remote desktop drawing command into a
Java graphics drawing command, wherein the transcoding
server comprises a Java compatible web application con-
tainer;

updating a portion of a Java graphics bitmap of the remote
desktop in response to the Java graphics drawing command;

generating coordinates for the updated portion of the Java
bitmap from the Java graphics drawing command;

US 9,244,912 B1

49

generating the display image compatible with the web
browser based on the updated portion of the Java bitmap; and

obtaining the drawing coordinates for the display image
based on the coordinates for the updated portion of the Java
bitmap,

wherein the display image and the drawing coordinates are
compatible with HTML,,

wherein the updated portion of the Java graphics bitmap
represents a portion of an entire image of the remote desktop
of the remote machine,

wherein the display image and the drawing coordinates
represent the portion of the entire image of the remote desktop
of the remote machine.

3. The method of clause 1, wherein the translating com-
prises:

translating the remote desktop drawing command into a
graphics drawing command compatible with the transcoding
server;

updating a portion of a bitmap of the remote desktop based
on the graphics drawing command;

generating the coordinates for the updated portion of the
bitmap;

generating the display image compatible with the web
browser based on the updated portion of the bitmap; and

obtaining the drawing coordinates for the display image,

wherein the display image and the drawing coordinates are
compatible with HTML..

4. The method of clause 1, wherein the display image and
the drawing coordinates are compatible with HTMLS5.

5. The method of clause 1, wherein the transcoding server
is an intermediary between the remote machine and the client
device, and wherein the transcoding server is physically sepa-
rate from the remote machine.

6. The method of clause 1, wherein the remote desktop
drawing command comprises coordinates of a region of the
remote desktop that has changed relative to a previous remote
desktop drawing command.

7. The method of clause 6, wherein the coordinates specify
a redrawing region.

8. The method of clause 1, wherein the drawing coordi-
nates are compatible with JavaScript client code of the web
browser, and wherein the display image is compatible with
HTML of the web browser.

9. The method of clause 1, wherein the display image
comprises a scaled image of the remote desktop.

10. The method of clause 1, wherein the display image
comprises an offset image of the remote desktop.

11. A machine-readable storage medium (see, e.g., 1210,
1219 in FIG. 12) encoded with instructions executable by a
processing system (see, e.g., 1202) to perform a method of
facilitating a remote desktop session between a web browser
of a client device (see, e.g., 310 in FIG. 3A) and a remote
machine (see, e.g., 320) through a transcoding server (see,
e.g., 330), utilizing hypertext transter protocol (HTTP) head-
ers of HTTP for remote desktop session drawing, the instruc-
tions comprising code for:

receiving, at the transcoding server, drawing requests from
the web browser of the client device (see, e.g., item 1602-B in
FIG. 16B);

receiving, at the transcoding server, a remote desktop
drawing command from the remote machine using a remote
desktop display protocol, wherein the remote desktop draw-
ing command is based on an image of a remote desktop of the
remote machine (see, e.g., item 1604-B in FIG. 16B);

10

35

40

45

50

translating, at the transcoding server, the remote desktop
drawing command into a display image and drawing coordi-
nates for the display image (see, e.g., item 1606-B in FIG.
16B);

placing, at the transcoding server, the drawing coordinates
into an HTTP response header (see, e.g., item 1608-B in FIG.
16B); and

in response to at least one of the drawing requests, facili-
tating providing the display image and the drawing coordi-
nates together to the web browser in a single HTTP response,
for drawing the display image of the remote desktop at the
web browser, wherein the single HTTP response comprises
the HTTP response header (see, e.g., item 1610-B in FIG.
16B),

wherein the remote desktop display protocol is a push
protocol, and

wherein HTTP is a pull protocol.

12. The machine-readable storage medium of clause 11,
wherein the translating comprises:

translating the remote desktop drawing command into a
Java graphics drawing command, wherein the transcoding
server comprises a Java compatible web application con-
tainer;

updating a portion of a Java graphics bitmap of the remote
desktop in response to the Java graphics drawing command;

generating coordinates for the updated portion of the Java
bitmap from the Java graphics drawing command;

generating the display image compatible with the web
browser based on the updated portion of the Java bitmap; and

obtaining the drawing coordinates for the display image
based on the coordinates for the updated portion of the Java
bitmap,

wherein the display image and the drawing coordinates are
compatible with HTML,

wherein the updated portion of the Java graphics bitmap
represents a portion of an entire image of the remote desktop
of the remote machine,

wherein the display image and the drawing coordinates
represent the portion of the entire image of the remote desktop
of the remote machine.

13. The machine-readable storage medium of clause 11,
wherein the translating comprises:

translating the remote desktop drawing command into a
graphics drawing command compatible with the transcoding
server;

updating a portion of a bitmap of the remote desktop based
on the graphics drawing command;

generating the coordinates for the updated portion of the
bitmap;

generating the display image compatible with the web
browser based on the updated portion of the bitmap; and

obtaining the drawing coordinates for the display image,

wherein the display image and the drawing coordinates are
compatible with HTML..

14. The machine-readable storage medium of clause 11,
wherein the display image and the drawing coordinates are
compatible with HTMLS.

15. The machine-readable storage medium of clause 11,
wherein the transcoding server is an intermediary between
the remote machine and the client device, and wherein the
transcoding server is physically separate from the remote
machine.

16. The machine-readable storage medium of clause 11,
wherein the remote desktop drawing command comprises
coordinates of a region of the remote desktop that has
changed relative to a previous remote desktop drawing com-
mand.

US 9,244,912 B1

51

17. The machine-readable storage medium of clause 16,
wherein the coordinates specify a redrawing region.

18. The machine-readable storage medium of clause 11,
wherein the drawing coordinates are compatible with JavaS-
cript client code of the web browser, and wherein the display
image is compatible with HTML of the web browser.

19. The machine-readable storage medium of clause 11,
wherein the display image comprises a scaled image of the
remote desktop.

20. The machine-readable storage medium of clause 11,
wherein the display image comprises an offset image of the
remote desktop.

21. A computing machine comprising the machine-read-
able storage medium of clause 11, wherein the computing
machine is the transcoding server.

22. An apparatus (see, e.g., item 1600-C in FIG. 16C) for
facilitating a remote desktop session between a web browser
of a client device (see, e.g., 310 in FIG. 3A) and a remote
machine (see, e.g., 320) through a transcoding server (see,
e.g., 330), utilizing hypertext transter protocol (HTTP) head-
ers of HTTP for remote desktop session drawing, the appa-
ratus comprising:

means for receiving drawing requests from the web
browser of the client device (see, e.g., item 1602-C in FIG.
160);

means for receiving a remote desktop drawing command
from the remote machine using a remote desktop display
protocol, wherein the remote desktop drawing command is
based on an image of a remote desktop of the remote machine
(see, e.g., item 1604-C in FIG. 16C);

means for translating the remote desktop drawing com-
mand into a display image and drawing coordinates for the
display image (see, e.g., item 1606-C in FIG. 16C);

means for placing the drawing coordinates into an HTTP
response header (see, e.g., item 1608-C in FIG. 16C); and

means for, in response to at least one of the drawing
requests, facilitating providing the display image and the
drawing coordinates together to the web browser in a single
HTTP response, for drawing the display image of the remote
desktop at the web browser, wherein the single HTTP
response comprises the HTTP response header (see, e.g., item
1610-C in FIG. 16C),

wherein the remote desktop display protocol is a push
protocol, and

wherein HTTP is a pull protocol.

23. The apparatus of clause 22, wherein the means for
translating comprises:

means for translating the remote desktop drawing com-
mand into a Java graphics drawing command, wherein the
transcoding server comprises a Java compatible web applica-
tion container;

means for updating a portion of a Java graphics bitmap of
the remote desktop in response to the Java graphics drawing
command;

means for generating coordinates for the updated portion
of'the Java bitmap from the Java graphics drawing command;

means for generating the display image compatible with
the web browser based on the updated portion of the Java
bitmap; and

means for obtaining the drawing coordinates for the dis-
play image based on the coordinates for the updated portion
of the Java bitmap,

wherein the display image and the drawing coordinates are
compatible with HTML,,

wherein the updated portion of the Java graphics bitmap
represents a portion of an entire image of the remote desktop
of the remote machine,

15

25

30

35

40

45

52

wherein the display image and the drawing coordinates
represent the portion of the entire image of the remote desktop
of the remote machine.

24. The apparatus of clause 22, wherein the means for
translating comprises:

means for translating the remote desktop drawing com-
mand into a graphics drawing command compatible with the
transcoding server;

means for updating a portion of a bitmap of the remote
desktop based on the graphics drawing command;

means for generating the coordinates for the updated por-
tion of the bitmap;

means for generating the display image compatible with
the web browser based on the updated portion of the bitmap;
and

means for obtaining the drawing coordinates for the dis-
play image,

wherein the display image and the drawing coordinates are
compatible with HTML..

25. The apparatus of clause 22, wherein the display image
and the drawing coordinates are compatible with HTMLS.

26. The apparatus of clause 22, wherein the transcoding
server is an intermediary between the remote machine and the
client device, and wherein the transcoding server is physi-
cally separate from the remote machine.

27. The apparatus of clause 22, wherein the remote desktop
drawing command comprises coordinates of a region of the
remote desktop that has changed relative to a previous remote
desktop drawing command.

28. The apparatus of clause 27, wherein the coordinates
specify a redrawing region.

29. The apparatus of clause 22, wherein the drawing coor-
dinates are compatible with JavaScript client code of the web
browser, and wherein the display image is compatible with
HTML of the web browser.

30. The apparatus of clause 22, wherein the display image
comprises a scaled image of the remote desktop.

31. The apparatus of clause 22, wherein the display image
comprises an offset image of the remote desktop.

32. The apparatus of clause 22, wherein the apparatus
comprises the transcoding server.

33. The apparatus of clause 22, wherein the apparatus
comprises a processing system and a memory.

Iustration of Method/ Apparatus/Machine Readable Stor-
age Medium for facilitating a remote desktop session
between a web browser of a client device and a remote
machine through a transcoding server, utilizing long polling
to reduce traffic to the client device (described as Clauses).

The subject technology is illustrated, for example, accord-
ing to various aspects described below. Various examples of
aspects of the subject technology are described as numbered
clauses (1, 2, 3, etc.) for convenience. These are provided as
examples, and do not limit the subject technology. It is noted
that any of the dependent clauses may be combined in any
combination, and placed into a respective independent clause,
e.g., clauses 1, 11, and 22. Clause 1 below is presented, for
example, with reference to FIGS. 17A-17C. The other clauses
can be presented in a similar manner.

1. A method (see, e.g., 1700-A of FIG. 17A) of facilitating
a remote desktop session between a web browser (see, e.g.,
500 of FIG. 5) of a client device (see, e.g., 310 of FIG.3A) and
a remote machine (see, e.g., 320 of FIG. 3A) through a
transcoding server (see, e.g., 330 of FIG. 3A), utilizing long
polling to reduce traffic to the client device, the method com-
prising:

US 9,244,912 B1

53

receiving, at the transcoding server, a plurality of drawing
requests from the web browser of the client device, using
HTTP, wherein HTTP is a pull protocol (see, e.g., item
1702-A in FIG. 17A),
handling, atthe transcoding server, the plurality of drawing
requests as long polling requests (see, e.g., item 1704-A in
FIG. 17A);
receiving, at the transcoding server, a remote desktop
drawing command from the remote machine (see, e¢.g., item
1706-A in FIG. 17A);
translating, at the transcoding server, the remote desktop
drawing command into a web browser drawing update,
wherein the remote desktop drawing command is compatible
with a push protocol, wherein the web browser drawing
update is compatible with HTTP, wherein HTTP is a pull
protocol (see, e.g., item 1708-A in FIG. 17A); and
facilitating providing the web browser drawing update
from the transcoding server to the web browser of the client
device, utilizing HTTP, as a response to at least one of the
plurality of drawing requests from the web browser (see, e.g.,
item 1710-A in FIG. 17A).
2. The method of clause 1, wherein the handling comprises:
determining whether a drawing command is pending at the
transcoding server for the web browser;
if there is no pending drawing command, then storing the
plurality of drawing requests in a drawing requests queue as
long poling requests; and
if there is a pending drawing command, then providing at
least one of the plurality of drawing requests to an HTTP
handler in the transcoding server to allow the HT'TP handler
to serve the pending drawing command in response to the at
least one of the plurality of drawing requests.
3. The method of clause 1, wherein the remote desktop
drawing command represents a portion of an entire image of
a remote desktop of the remote machine,
wherein the translating comprises:
translating the remote desktop drawing command into a
Java graphics drawing command;

updating a portion of a Java bitmap of the entire image of
the remote desktop in response to the Java graphics
drawing command;
generating coordinates of the updated portion of the Java
bitmap based on the Java graphics drawing command;

generating an image file based on the updated portion of the
Java bitmap, wherein the image file is compatible with
the web browser; and

obtaining drawing coordinates for the image file based on

the coordinates of the updated portion of the Java bit-
map,

wherein the web browser drawing update comprises the
image file and the drawing coordinates.

4. The method of clause 3, wherein the handling comprises:

determining whether a drawing command is pending at the
transcoding server for the web browser;

if there is no pending drawing command, then storing the
plurality of drawing requests in a drawing requests queue as
long poling requests; and

if there is a pending drawing command, then providing at
least one of the plurality of drawing requests to an HTTP
handler in the transcoding server to allow the HT'TP handler
to serve the pending drawing command in response to the at
least one of the plurality of drawing requests.

5. The method of clause 4, wherein the facilitating provid-
ing comprises:

placing, at the HTTP handler, the drawing coordinates into
an HTTP header of a single HTTP transmission response to
the web browser; and

10

15

20

25

30

35

40

45

50

55

60

65

54

including, at the HTTP handler, the image file into the
single HTTP transmission response to the web browser to
facilitate providing the image file and the drawing coordi-
nates together to the web browser in the single HTTP trans-
mission response.

6. The method of clause 5, comprising:

when a drawing commands queue has new coordinates,
sending a notification to the drawing requests queue to allow
at least one of the plurality of drawing requests in the drawing
requests queue to be forwarded to the HTTP handler.

7. The method of clause 1, comprising:

receiving a new drawing request from the web browser, in
response to facilitating providing the web browser drawing
update from the transcoding server to the web browser of the
client device as a response to the at least one of the plurality
of drawing requests from the web browser.

8. The method of clause 1, comprising:

receiving a request from the web browser to connect to the
remote machine; and

facilitating providing a JavaScript client code to the web
browser in response to the request to connect to the remote
machine,

wherein the receiving the plurality of drawing requests
comprises receiving the plurality of drawing requests from
the JavaScript client code,

wherein the facilitating providing the web browser draw-
ing update comprises facilitating providing the web browser
drawing update to the JavaScript client code.

9. The method of clause 8, comprising: facilitating deleting
the JavaScript client code from the web browser when the
remote desktop session is terminated.

10. The method of clause 1, comprising:

receiving, at the transcoding server, a user input request
from the web browser for accessing or controlling a remote
desktop of the remote machine,

translating, at the transcoding server, the user input request
into an input command compatible with the push protocol;

facilitating providing the input command to the remote
machine utilizing the push protocol,

wherein the receiving the remote desktop drawing com-
mand comprises receiving the remote desktop drawing com-
mand in response to the input command.

11. A machine-readable storage medium (see, e.g., item
1700-B in FIG. 17B) encoded with instructions executable by
a processing system to perform a method of facilitating a
remote desktop session between a web browser (see, e.g., 500
of FIG. 5) of a client device (see, e.g., 310 of FIG. 3A) and a
remote machine (see, e.g., 320 of FIG. 3B) through a
transcoding server (see, e.g., 330 of FIG. 3B), utilizing long
polling to reduce traffic to the client device, the instructions
comprising code for:

receiving, at the transcoding server, a plurality of drawing
requests from the web browser of the client device, using
HTTP, wherein HTTP is a pull protocol (see, e.g., item
1702-B in FIG. 17B);

handling, at the transcoding server, the plurality of drawing
requests as long polling requests (see, e.g., item 1704-B in
FIG. 17B);

receiving, at the transcoding server, a remote desktop
drawing command from the remote machine (see, e.g., item
1706-B in FIG. 17B);

translating, at the transcoding server, the remote desktop
drawing command into a web browser drawing update,
wherein the remote desktop drawing command is compatible
with a push protocol, wherein the web browser drawing
update is compatible with HTTP, wherein HTTP is a pull
protocol (see, e.g., item 1708-B in FIG. 17B); and

US 9,244,912 B1

55

facilitating providing the web browser drawing update
from the transcoding server to the web browser of the client
device, utilizing HTTP, as a response to at least one of the
plurality of drawing requests from the web browser (see, e.g.,
item 1710-B in FIG. 17B).
12. The machine-readable storage medium of clause 11,
wherein the handling comprises:
determining whether a drawing command is pending at the
transcoding server for the web browser;
if there is no pending drawing command, then storing the
plurality of drawing requests in a drawing requests queue as
long poling requests; and
if there is a pending drawing command, then providing at
least one of the plurality of drawing requests to an HTTP
handler in the transcoding server to allow the HT'TP handler
to serve the pending drawing command in response to the at
least one of the plurality of drawing requests.
13. The machine-readable storage medium of clause 11,
wherein the remote desktop drawing command represents a
portion of an entire image of a remote desktop of the remote
machine,
wherein the translating comprises:
translating the remote desktop drawing command into a
Java graphics drawing command;

updating a portion of a Java bitmap of the entire image of
the remote desktop in response to the Java graphics
drawing command;
generating coordinates of the updated portion of the Java
bitmap based on the Java graphics drawing command;

generating an image file based on the updated portion of the
Java bitmap, wherein the image file is compatible with
the web browser; and

obtaining drawing coordinates for the image file based on

the coordinates of the updated portion of the Java bit-
map,

wherein the web browser drawing update comprises the
image file and the drawing coordinates.

14. The machine-readable storage medium of clause 13,
wherein the handling comprises:

determining whether a drawing command is pending at the
transcoding server for the web browser;

if there is no pending drawing command, then storing the
plurality of drawing requests in a drawing requests queue as
long poling requests; and

if there is a pending drawing command, then providing at
least one of the plurality of drawing requests to an HTTP
handler in the transcoding server to allow the HT'TP handler
to serve the pending drawing command in response to the at
least one of the plurality of drawing requests.

15. The machine-readable storage medium of clause 14,
wherein the facilitating providing comprises:

placing, at the HTTP handler, the drawing coordinates into
an HTTP header of a single HTTP transmission response to
the web browser; and

including, at the HTTP handler, the image file into the
single HTTP transmission response to the web browser to
facilitate providing the image file and the drawing coordi-
nates together to the web browser in the single HT'TP trans-
mission response.

16. The machine-readable storage medium of clause 15,
comprising code for:

when a drawing commands queue has new coordinates,
sending a notification to the drawing requests queue to allow
at least one of the plurality of drawing requests in the drawing
requests queue to be forwarded to the HTTP handler.

10

15

20

25

30

35

40

45

50

55

60

65

56

17. The machine-readable storage medium of clause 11,
comprising code for:

receiving a new drawing request from the web browser, in
response to facilitating providing the web browser drawing
update from the transcoding server to the web browser of the
client device as a response to the at least one of the plurality
of drawing requests from the web browser.

18. The machine-readable storage medium of clause 11,
comprising code for:

receiving a request from the web browser to connect to the
remote machine; and

facilitating providing a JavaScript client code to the web
browser in response to the request to connect to the remote
machine,

wherein the receiving the plurality of drawing requests
comprises receiving the plurality of drawing requests from
the JavaScript client code,

wherein the facilitating providing the web browser draw-
ing update comprises facilitating providing the web browser
drawing update to the JavaScript client code.

19. The machine-readable storage medium of clause 18,
comprising code for: facilitating deleting the JavaScript client
code from the web browser when the remote desktop session
is terminated.

20. The machine-readable storage medium of clause 11,
comprising code for:

receiving, at the transcoding server, a user input request
from the web browser for accessing or controlling a remote
desktop of the remote machine,

translating, at the transcoding server, the user input request
into an input command compatible with the push protocol;

facilitating providing the input command to the remote
machine utilizing the push protocol,

wherein the receiving the remote desktop drawing com-
mand comprises receiving the remote desktop drawing com-
mand in response to the input command.

21. A computing machine comprising the machine-read-
able storage medium of clause 11, wherein the computing
machine is the transcoding server.

22. An apparatus (see, e.g., item 1700-C in FIG. 17C) for
facilitating a remote desktop session between a web browser
(see, e.g., 500 of FIG. 5) of a client device (see, e.g., 310 in
FIG. 3A) and a remote machine (see, e.g., 330 in FIG. 3A)
through a transcoding server (see, e.g., 330 in FIG. 3A),
utilizing long polling to reduce traffic to the client device, the
apparatus comprising:

means for receiving a plurality of drawing requests from
the web browser of the client device, using HTTP, wherein
HTTP is a pull protocol (see, e.g., item 1702-C in FIG. 17C);

means for handling the plurality of drawing requests as
long polling requests (see, e.g., item 1704-C in FIG. 17C);

means for receiving a remote desktop drawing command
from the remote machine (see, e.g., item 1706-C in FIG.
170);

means for translating the remote desktop drawing com-
mand into a web browser drawing update, wherein the remote
desktop drawing command is compatible with a push proto-
col, wherein the web browser drawing update is compatible
with HTTP, wherein HTTP is a pull protocol (see, e.g., item
1708-C in FIG. 17C); and

means for facilitating providing the web browser drawing
update from the transcoding server to the web browser of the
client device, utilizing HTTP, as a response to at least one of
the plurality of drawing requests from the web browser (see,
e.g., item 1710-C in FIG. 17C).

23. The apparatus of clause 22, wherein the means for
handling comprises:

means for determining whether a drawing command is
pending at the transcoding server for the web browser;

US 9,244,912 B1

57

means for storing the plurality of drawing requests in a
drawing requests queue as long poling requests if there is no
pending drawing command; and

means for providing at least one of the plurality of drawing
requests to an HTTP handler in the transcoding server, if there
is a pending drawing command, to allow the HTTP handler to
serve the pending drawing command in response to the at
least one of the plurality of drawing requests.

24. The apparatus of clause 22, wherein the remote desktop
drawing command represents a portion of an entire image of
a remote desktop of the remote machine,

wherein the means for translating comprises:

means for translating the remote desktop drawing com-

mand into a Java graphics drawing command;

means for updating a portion of a Java bitmap of the entire

image of the remote desktop in response to the Java
graphics drawing command;

means for generating coordinates of the updated portion of

the Java bitmap based on the Java graphics drawing
command;

means for generating an image file based on the updated

portion of the Java bitmap, wherein the image file is
compatible with the web browser; and

means for obtaining drawing coordinates for the image file

based on the coordinates of the updated portion of the
Java bitmap,

wherein the web browser drawing update comprises the
image file and the drawing coordinates.

25. The apparatus of clause 22, wherein the means for
handling comprises:

means for determining whether a drawing command is
pending at the transcoding server for the web browser;

means for storing the plurality of drawing requests in a
drawing requests queue as long poling requests if there is no
pending drawing command; and

means for providing at least one of the plurality of drawing
requests to an HTTP handler in the transcoding server, if there
is a pending drawing command, to allow the HTTP handler to
serve the pending drawing command in response to the at
least one of the plurality of drawing requests.

26. The apparatus of clause 22, wherein the means for
facilitating providing comprises:

means for placing, at the HTTP handler, the drawing coor-
dinates into an HTTP header of a single HT'TP transmission
response to the web browser; and

means for including, at the HT'TP handler, the image file
into the single HTTP transmission response to the web
browser to facilitate providing the image file and the drawing
coordinates together to the web browser in the single HTTP
transmission response.

27. The apparatus of clause 22, comprising:

means for sending a notification to the drawing requests
queue, when a drawing commands queue has new coordi-
nates, to allow at least one of the plurality of drawing requests
in the drawing requests queue to be forwarded to the HTTP
handler.

28. The apparatus of clause 22, comprising:

means for receiving a new drawing request from the web
browser, inresponse to facilitating providing the web browser
drawing update from the transcoding server to the web
browser of the client device as a response to the at least one of
the plurality of drawing requests from the web browser.

29. The apparatus of clause 22, comprising:

means for receiving a request from the web browser to
connect to the remote machine; and

10

15

20

25

30

40

45

50

55

60

65

58

means for facilitating providing a JavaScript client code to
the web browser in response to the request to connect to the
remote machine,

wherein the means for receiving the plurality of drawing
requests comprises means for receiving the plurality of draw-
ing requests from the JavaScript client code,

wherein the means for facilitating providing the web
browser drawing update comprises means for facilitating pro-
viding the web browser drawing update to the JavaScript
client code.

30. The apparatus of clause 29, comprising: means for
facilitating deleting the JavaScript client code from the web
browser when the remote desktop session is terminated.

31. The apparatus of clause 22, comprising:

means for receiving a user input request from the web
browser for accessing or controlling a remote desktop of the
remote machine,

means for translating the user input request into an input
command compatible with the push protocol;

means for facilitating providing the input command to the
remote machine utilizing the push protocol,

wherein the means for receiving the remote desktop draw-
ing command comprises means for receiving the remote
desktop drawing command in response to the input com-
mand.

32. The apparatus of clause 22, wherein the apparatus
comprises the transcoding server.

33. The apparatus of clause 22, wherein the apparatus
comprises a processing system and a memory.

Iustration of Method/ Apparatus/Machine Readable Stor-
age Medium for facilitating a remote desktop session
between a web browser of a client device and a remote desk-
top server at a remote machine through a transcoding server,
utilizing an adapter at the transcoding server (described as
Clauses).

The subject technology is illustrated, for example, accord-
ing to various aspects described below. Various examples of
aspects of the subject technology are described as numbered
clauses (1, 2, 3, etc.) for convenience. These are provided as
examples, and do not limit the subject technology. It is noted
that any of the dependent clauses may be combined in any
combination, and placed into a respective independent clause,
e.g., clauses 1, 10, and 20. Clause 1 below is presented, for
example, with reference to FIGS. 18 A-18C. The other clauses
can be presented in a similar manner.

1. A method (see, e.g., item 1800-A in FIG. 18A) for
facilitating a remote desktop session between a web browser
of a client device (see, e.g., 310 in FIG. 3A) and a remote
desktop server at a remote machine (see, e.g., 320) through a
transcoding server (see, e.g., 330), utilizing an adapter (see,
e.g., 600 in FIG. 6) at the transcoding server, the method
comprising:

receiving, at the adapter, an input request from the web
browser utilizing a request-response protocol, wherein the
request-response protocol is a pull protocol (see, e.g., item
1802-A in FIG. 18A);

translating, at the adapter, the input request into an input
command compatible with a remote desktop display protocol
to be utilized by a remote desktop client at the transcoding
server for facilitating communication with the remote desk-
top server at the remote machine, wherein the remote desktop
display protocol is a push protocol (see, e.g., item 1804-A in
FIG. 18A);

providing the input command to a remote desktop client at
the transcoding server, to facilitate providing the input com-
mand to the remote desktop server utilizing the remote desk-
top display protocol (see, e.g., item 1806-A in FIG. 18A);

US 9,244,912 B1

59

receiving, at the adapter, a remote desktop drawing com-
mand from the remote desktop server in response to the input
command, wherein the remote desktop drawing command is
based on an image of a remote desktop of the remote machine
(see, e.g., item 1808-A in FIG. 18A); and

translating, at the adapter, the remote desktop drawing
command into a graphics drawing command compatible with
the transcoding server to allow the transcoding server to
facilitate providing a web browser drawing update to the web
browser, wherein the web browser drawing update is compat-
ible with the web browser (see, e.g., item 1810-A in FIG.
18A).

2. The method of clause 1, wherein the request-response
protocol comprises hypertext transfer protocol (HTTP),
wherein the graphics drawing command is a Java graphics
drawing command, wherein the transcoding server is a Java
transcoding server, wherein the web browser is HTMLS com-
patible.

3. The method of clause 1, wherein the receiving the input
request comprises receiving the input request from the web
browser via an HTTP handler of a web application container
at the transcoding server,

wherein the receiving the remote desktop drawing com-
mand comprises receiving the remote desktop drawing com-
mand via the remote desktop client using the remote desktop
display protocol.

4. The method of clause 1, wherein the remote desktop
drawing command comprises remote desktop drawing com-
mand parameters and bitmap data received from the remote
desktop server,

wherein the translating the remote desktop drawing com-
mand comprises one or more of: calculating new drawing
command parameters based on the remote desktop drawing
command parameters; adjusting the remote desktop drawing
command parameters; and making adjustments to the bitmap
data.

5. The method of clause 1, comprising:

generating an image based on the graphics drawing com-
mand; and

generating coordinates for the image based on the graphics
drawing command,

wherein the image represents a portion of an entire image
of the remote desktop.

6. The method of clause 1, comprising:

executing the graphics drawing command to generate and
draw an image into a drawing commands queue at the
transcoding server that is accessible by a web application
container at the transcoding server for communicating with
the web browser;

generating coordinates for the image based on the graphics
drawing command;

storing the coordinates in the drawing commands queue;
and

after generating the coordinates, transmitting a notification
to the web application container that a drawing command is
ready to be served to the web browser,

wherein the graphics drawing command represents a por-
tion of an entire image of the remote desktop.

7. The method of clause 1, comprising:

receiving, via an HTTP handler of the transcoding server, a
connection request from the web browser; and

facilitating establishing, controlling or terminating the
remote desktop session between the remote desktop client
and the remote desktop server in response to the connection
request, wherein the facilitating of the establishing, control-
ling or terminating comprises:

5

10

15

20

25

30

35

40

45

50

55

60

65

60

generating a session control command based on the con-
nection request, wherein the session control command is
compatible with the remote desktop display protocol;
and

facilitating transmitting the session control command to

the remote desktop server via the remote desktop client
using the remote desktop display protocol.

8. The method of clause 7, wherein the session control
command comprises at least one of: a command for starting
the remote desktop session, a command for stopping the
remote desktop session, a credential, a setting, a preference,
and a command for passing at least one of a credential, a
setting, and a preference.

9. The method of clause 1, comprising:

extracting coordinates from the graphics drawing com-
mand; and

updating at least a portion of an oft-screen bitmap based on
the graphics drawing command, wherein the at least a portion
of the off-screen bitmap is associated with the coordinates,
wherein the off-screen bitmap represents an entire image of
the remote desktop.

10. A machine-readable storage medium (see, e.g., 1210,
1219 in FIG. 12) encoded with instructions executable by a
processing system (see, e.g., 1202) to perform a method for
facilitating a remote desktop session between a web browser
of a client device (see, e.g., 310 in FIG. 3A) and a remote
desktop server at a remote machine (see, e.g., 320) through a
transcoding server (see, e.g., 330), utilizing an adapter (see,
e.g., 600 in FIG. 6) at the transcoding server, the instructions
comprising code for:

receiving, at the adapter, an input request from the web
browser utilizing a request-response protocol, wherein the
request-response protocol is a pull protocol (see, e.g., item
1802-B in FIG. 18B);

translating, at the adapter, the input request into an input
command compatible with a remote desktop display protocol
to be utilized by a remote desktop client at the transcoding
server for facilitating communication with the remote desk-
top server at the remote machine, wherein the remote desktop
display protocol is a push protocol (see, e.g., item 1804-B in
FIG. 18B);

providing the input command to a remote desktop client at
the transcoding server, to facilitate providing the input com-
mand to the remote desktop server utilizing the remote desk-
top display protocol (see, e.g., item 1806-B in FIG. 18B);

receiving, at the adapter, a remote desktop drawing com-
mand from the remote desktop server in response to the input
command, wherein the remote desktop drawing command is
based on an image of a remote desktop of the remote machine
(see, e.g., item 1808-B in FIG. 18B); and

translating, at the adapter, the remote desktop drawing
command into a graphics drawing command compatible with
the transcoding server to allow the transcoding server to
facilitate providing a web browser drawing update to the web
browser, wherein the web browser drawing update is compat-
ible with the web browser (see, e.g., item 1810-B in FIG.
18B).

11. The machine-readable storage medium of clause 10,
wherein the request-response protocol comprises hypertext
transfer protocol (HTTP), wherein the graphics drawing com-
mand is a Java graphics drawing command, wherein the
transcoding server is a Java transcoding server, wherein the
web browser is HTMLS5 compatible.

12. The machine-readable storage medium of clause 10,
wherein the receiving the input request comprises receiving
the input request from the web browser via an HT'TP handler
of an application container at the transcoding server,

US 9,244,912 B1

61

wherein the receiving the remote desktop drawing com-
mand comprises receiving the remote desktop drawing com-
mand via the remote desktop client using the remote desktop
display protocol.

13. The machine-readable storage medium of clause 10,
wherein the remote desktop drawing command comprises
remote desktop drawing command parameters and bitmap
data received from the remote desktop server,

wherein the translating the remote desktop drawing com-
mand comprises one or more of: calculating new drawing
command parameters based on the remote desktop drawing
command parameters; adjusting the remote desktop drawing
command parameters; and making adjustments to the bitmap
data.

14. The machine-readable storage medium of clause 10,
wherein the instructions comprise code for:

generating an image based on the graphics drawing com-
mand; and

generating coordinates for the image based on the graphics
drawing command,

wherein the image represents a portion of an entire image
of the remote desktop.

15. The machine-readable storage medium of clause 10,
wherein the instructions comprise code for:

executing the graphics drawing command to generate and
draw an image into a drawing commands queue at the
transcoding server that is accessible by a web application
container at the transcoding server for communicating with
the web browser;

generating coordinates for image based on the graphics
drawing command;

storing the coordinates in the drawing commands queue;
and

after generating the coordinates, transmitting a notification
to the web application container that a drawing command is
ready to be served to the web browser,

wherein the graphics drawing command represents a por-
tion of an entire image of the remote desktop.

16. The machine-readable storage medium of clause 10,
wherein the instructions comprise code for:

receiving, via an HTTP handler of the transcoding server, a
connection request from the web browser; and

facilitating establishing, controlling or terminating the
remote desktop session between the remote desktop client
and the remote desktop server in response to the connection
request, wherein the facilitating of the establishing, control-
ling or terminating comprises:

generating a session control command based on the con-

nection request, wherein the session control command is
compatible with the remote desktop display protocol;
and

facilitating transmitting the session control command to

the remote desktop server via the remote desktop client
using the remote desktop display protocol.

17. The machine-readable storage medium of clause 16,
wherein the session control command comprises at least one
of: a command for starting the remote desktop session, a
command for stopping the remote desktop session, a creden-
tial, a setting, a preference, and a command for passing at least
one of a credential, a setting, and a preference.

18. The machine-readable storage medium of clause 10,
wherein the instructions comprise code for:

extracting coordinates from the graphics drawing com-
mand; and

updating at least a portion of an oft-screen bitmap based on
the graphics drawing command, wherein the at least a portion

10

15

20

25

30

35

40

45

50

55

60

65

62

of the off-screen bitmap is associated with the coordinates,
wherein the off-screen bitmap represents an entire image of
the remote desktop.

19. A computing machine comprising the machine-read-
able storage medium of clause 10, wherein the computing
machine is the transcoding server.

20. An apparatus (see, e.g., item 1800-C in FIG. 18C) for
facilitating a remote desktop session between a web browser
of a client device (see, e.g., 310 in FIG. 3A) and a remote
desktop server at a remote machine (see, e.g., 320) through a
transcoding server (see, e.g., 330), utilizing an adapter (see,
e.g., 600 in FIG. 6) at the transcoding server, the apparatus
comprising:

means for receiving an input request from the web browser
utilizing a request-response protocol, wherein the request-
response protocol is a pull protocol (see, e.g., item 1802-C in
FIG. 18C);

means for translating the input request into an input com-
mand compatible with a remote desktop display protocol to
be utilized by a remote desktop client at the transcoding
server for facilitating communication with the remote desk-
top server at the remote machine, wherein the remote desktop
display protocol is a push protocol (see, e.g., item 1804-C in
FIG. 18C);

means for providing the input command to a remote desk-
top client at the transcoding server, to facilitate providing the
input command to the remote desktop server utilizing the
remote desktop display protocol (see, e.g., item 1806-C in
FIG. 18C);

means for receiving a remote desktop drawing command
from the remote desktop server in response to the input com-
mand, wherein the remote desktop drawing command is
based on an image of a remote desktop of the remote machine
(see, e.g., item 1808-C in FIG. 18C); and

means for translating the remote desktop drawing com-
mand into a graphics drawing command compatible with the
transcoding server to allow the transcoding server to facilitate
providing a web browser drawing update to the web browser,
wherein the web browser drawing update is compatible with
the web browser (see, e.g., item 1810-C in FIG. 18C).

21. The apparatus of clause 20, wherein the request-re-
sponse protocol comprises hypertext transfer protocol
(HTTP), wherein the graphics drawing command is a Java
graphics drawing command, wherein the transcoding server
is a Java transcoding server, wherein the web browser is
HTMLS5 compatible.

22. The apparatus of clause 20, wherein the means for
receiving the input request comprises means for receiving the
input request from the web browser via an HTTP handler of a
web application container at the transcoding server,

wherein the means for receiving the remote desktop draw-
ing command comprises means for receiving the remote
desktop drawing command via the remote desktop client
using the remote desktop display protocol.

23. The apparatus of clause 20, wherein the remote desktop
drawing command comprises remote desktop drawing com-
mand parameters and bitmap data received from the remote
desktop server,

wherein the means for translating the remote desktop
drawing command comprises one or more of: means for
calculating new drawing command parameters based on the
remote desktop drawing command parameters; means for
adjusting the remote desktop drawing command parameters;
and means for making adjustments to the bitmap data.

24. The apparatus of clause 20, comprising:

means for generating an image based on the graphics draw-
ing command; and

US 9,244,912 B1

63

means for generating coordinates for the image based on
the graphics drawing command,

wherein the image represents a portion of an entire image
of the remote desktop.

25. The apparatus of clause 20, comprising:

means for executing the graphics drawing command to
generate and draw an image into a drawing commands queue
at the transcoding server that is accessible by a web applica-
tion container at the transcoding server for communicating
with the web browser;

means for generating coordinates for image based on the
graphics drawing command;

means for storing the coordinates in the drawing com-
mands queue; and

means for transmitting, after generating the coordinates, a
notification to the web application container that a drawing
command is ready to be served to the web browser,

wherein the graphics drawing command represents a por-
tion of an entire image of the remote desktop.

26. The apparatus of clause 20, comprising:

means for receiving, via an HI'TP handler of the transcod-
ing server, a connection request from the web browser; and

means for facilitating establishing, controlling or terminat-
ing the remote desktop session between the remote desktop
client and the remote desktop server in response to the con-
nection request, wherein the means for facilitating of the
establishing, controlling or terminating comprises:

means for generating a session control command based on

the connection request, wherein the session control
command is compatible with the remote desktop display
protocol; and

means for facilitating transmitting the session control com-

mand to the remote desktop server via the remote desk-
top client using the remote desktop display protocol.

27. The apparatus of clause 26, wherein the session control
command comprises at least one of: a command for starting
the remote desktop session, a command for stopping the
remote desktop session, a credential, a setting, a preference,
and a command for passing at least one of a credential, a
setting, and a preference.

28. The apparatus of clause 20, comprising:

means for extracting coordinates from the graphics draw-
ing command; and

means for updating at least a portion of an off-screen bit-
map based on the graphics drawing command, wherein the at
least a portion of the off-screen bitmap is associated with the
coordinates, wherein the off-screen bitmap represents an
entire image of the remote desktop.

29. The apparatus of clause 20, wherein the apparatus
comprises the transcoding server.

30. The apparatus of clause 20, wherein the apparatus
comprises a processing system and a memory.

Tlustration of Method/ Apparatus/Machine Readable Stor-
age Medium for facilitating accessing and controlling a
remote desktop of a remote machine in real time from a web
browser of a client device via a hypertext transfer protocol
(HTTP) handler and a remote desktop client adapter for a
transcoding server (described as Clauses).

The subject technology is illustrated, for example, accord-
ing to various aspects described below. Various examples of
aspects of the subject technology are described as numbered
clauses (1, 2, 3, etc.) for convenience. These are provided as
examples, and do not limit the subject technology. It is noted
that any of the dependent clauses may be combined in any
combination, and placed into a respective independent clause,
e.g., clauses 1, 10, and 18. Clause 1 below is presented, for

10

15

20

25

30

35

40

45

50

55

60

65

64
example, with reference to FIGS. 19A-19E. The other clauses
can be presented in a similar manner.

1. A machine-readable storage medium (see, e.g., item
1900-A in FIG. 19A) comprising code for facilitating access-
ing and controlling a remote desktop of a remote machine
(see, e.g., 320 in FIG. 3A) in real time from a web browser
(see, e.g., 500 of FIG. 5) at a client device (see, e.g., 310 of
FIG. 3A) via a hypertext transfer protocol (HTTP) handler
(see, e.g., 422 of FIG. 4A) and a remote desktop client adapter
(see, e.g., 430 of FIG. 4B) for a transcoding server (see, e.g.,
330 of FIG. 3A), the machine-readable storage medium com-
prising:

the HTTP handler (see, e.g., item 1902-A of FIG. 19A);
and

the remote desktop client adapter (see, e.g., item 1904-A of
FIG. 19A);

wherein the HTTP handler is configured to facilitate
receiving a connection request and a user input request from
the web browser utilizing HTTP, to facilitate providing the
connection request and the user input request to the remote
desktop client adapter, and to facilitate providing a web
browser drawing update to the web browser in response to a
drawing request from the web browser, wherein the web
browser drawing update is compatible with the web browser,

wherein the remote desktop client adapter is configured to
facilitate receiving the connection request and the user input
request, to translate the connection request into a session
control command compatible with a remote desktop display
protocol, and to translate the user input request into a remote
desktop input command compatible with the remote desktop
display protocol,

wherein the remote desktop client adapter is configured to
facilitate providing the session control command to a remote
desktop client for providing the session control command to
a remote desktop server of the remote machine and for estab-
lishing, controlling or terminating a remote desktop session
with the remote desktop server,

wherein the remote desktop client adapter is configured to
facilitate providing the remote desktop input command to the
remote desktop client for providing the remote desktop input
command to the remote desktop server,

wherein the remote desktop client adapter is configured to
facilitate receiving a remote desktop drawing command from
the remote desktop server via the remote desktop client in
response to the remote desktop input command, wherein the
remote desktop drawing command is compatible with the
remote desktop display protocol,

wherein the remote desktop client adapter is configured to
translate the remote desktop drawing command into a graph-
ics drawing command compatible with the transcoding
server, and to update a portion of an image representing the
entire remote desktop and coordinates based on the graphics
drawing command, and

wherein the HTTP handler is configured to generate an
image file based on the updated portion of the image and to
obtain drawing coordinates based on the coordinates in
response to the drawing request, wherein the web browser
drawing update comprises the image file and the drawing
coordinates,

wherein the remote desktop drawing command represents
a portion of the entire remote desktop,

wherein the remote desktop display protocol is a push
protocol, and HTTP is a pull protocol.

2. The machine-readable storage medium of clause 1,
wherein the user input request comprises at least one of a
mouse event, a keyboard event, and a touch event.

US 9,244,912 B1

65

3. The machine-readable storage medium of clause 1,
wherein the session control command relates to establishing
or controlling a connection between the remote desktop client
and the remote desktop server and comprises at least one of:
a command for starting the remote desktop session, a com-
mand for stopping the remote desktop session, a credential, a
setting, a preference, and a command for passing at least one
of a credential, a setting, and a preference.

4. The machine-readable storage medium of clause 1,
wherein the graphics drawing command is a Java graphics
drawing command, wherein the transcoding server is a Java
transcoding server, and wherein the web browser is HTMLS
compatible.

5. The machine-readable storage medium of clause 1,
wherein the remote desktop client adapter is configured to
place the image and the coordinates into a drawing commands
queue,

wherein the machine-readable storage medium comprises
a long polling handler,

wherein the long polling handler is configured to facilitate
receiving the drawing request from the web browser utilizing
HTTP, to forward the drawing request to the HTTP handler if
coordinates for an image are pending in the drawing com-
mands queue, to place the drawing request into a drawing
requests queue if coordinates for an image are not pending in
the drawing commands, and

wherein the drawing commands queue is configured to
send a notification to the drawing requests queue if the draw-
ing commands queue receives a new drawing command com-
prising an image and coordinates for an image.

6. The machine-readable storage medium of clause 1, com-
prising a drawing requests queue configured to forward the
drawing request to the HT'TP handler in response to a notifi-
cation from a drawing commands queue that a drawing com-
mand is pending for the web browser.

7. The machine-readable storage medium of clause 1,
wherein the HTTP handler is configured to place the drawing
coordinates into a section of an HTTP header, wherein the
HTTP handler is configured to facilitate providing the image
file and the drawing coordinates together to the web browser
in a single HTTP transmission response for drawing a display
image at the web browser, wherein the display image repre-
sents the updated portion of the image representing the entire
remote desktop.

8. The machine-readable storage medium of clause 1,
wherein the HTTP handler is configured to facilitate provid-
ing script client code compatible with the web browser to the
web browser if the connection request from the web browser
comprises a request to connect to the remote machine.

9. A computing machine comprising the machine-readable
storage medium of clause 1, wherein the computing machine
is the transcoding server.

10. A method (see, e.g., item 1900-B of FIG. 19B and item
1900-C of FIG. 19C) for facilitating accessing and control-
ling a remote desktop of a remote machine (see, e.g., 320 of
FIG. 3A) in real time from a web browser (see, e.g., 500 of
FIG. 5) at a client device (see, e.g., 310 of FIG. 3A) utilizing
a transcoding server (see, e.g., 330 of FIG. 3A), the method
comprising:

receiving, at the transcoding server, a connection request
from the web browser utilizing HTTP (see, e.g., item 1902-B
of FIG. 19B);

translating, at the transcoding server, the connection
request into a session control command compatible with a
remote desktop display protocol (see, e.g., item 1904-B of
FIG. 19B);

20

25

30

35

40

45

60

66

providing the session control command to a remote desk-
top client of the transcoding server for providing the session
control command to a remote desktop server of the remote
machine and for establishing, controlling or terminating a
remote desktop session with the remote desktop server (see,
e.g., item 1906-B of FIG. 19B);

receiving, at the transcoding server, a user input request
from the web browser utilizing HTTP (see, e.g., item 1908-B
of FIG. 19B),

translating, at the transcoding server, the user input request
into a remote desktop input command compatible with the
remote desktop display protocol (see, e.g., item 1910-B of
FIG. 19B);

providing the remote desktop input command to the remote
desktop client for providing the remote desktop input com-
mand to the remote desktop server (see, e.g., item 1912-B of
FIG. 19B),

receiving, at the transcoding server, a remote desktop
drawing command from the remote desktop server via the
remote desktop client in response to the remote desktop input
command, wherein the remote desktop drawing command is
compatible with the remote desktop display protocol, and
wherein the remote desktop drawing command represents a
portion of an entire image of the remote desktop (see, e.g.,
item 1902-C of FIG. 19C);

translating, at the transcoding server, the remote desktop
drawing command into a graphics drawing command com-
patible with the transcoding server (see, e.g., item 1904-C of
FIG. 19C);

updating, at the transcoding server, a portion of an image
and coordinates based on the graphics drawing command
(see, e.g., item 1906-C of FIG. 19C);

generating, at the transcoding server, an image file based
on the updated portion of the image (see, e.g., item 1908-C of
FIG. 19C);

obtaining drawing coordinates based on the coordinates
(see, e.g., item 1910-C of FIG. 19C); and

facilitating providing a web browser drawing update to the
web browser in response to a drawing request from the web
browser, wherein the web browser drawing update comprises
the image file and the drawing coordinates, and wherein the
web browser drawing update is compatible with the web
browser (see, e.g., item 1912-C of FIG. 19C),

wherein the remote desktop drawing command represents
a portion of the entire remote desktop, and the image repre-
sents the entire remote desktop,

wherein the remote desktop display protocol is a push
protocol, and HTTP is a pull protocol.

11. The method of clause 10, wherein the user input request
comprises at least one of amouse event, akeyboard event, and
a touch event.

12. The method of clause 10, wherein the session control
command comprises at least one of: a command for starting
the remote desktop session, a command for stopping the
remote desktop session, a credential, a setting, a preference,
and a command for passing at least one of a credential, a
setting, and a preference.

13. The method of clause 10, wherein the graphics drawing
command is a Java graphics drawing command, wherein the
transcoding server is a Java transcoding server, and wherein
the web browser is HTMLS5 compatible.

14. The method of clause 10, wherein the updating a por-
tion of an image and coordinates comprises storing the por-
tion of the image and the coordinates into a drawing com-
mands queue,

wherein the method comprises: receiving the drawing
request from the web browser utilizing HTTP; forwarding the

US 9,244,912 B1

67

drawing request to an HTTP handler if coordinates for an
image are pending in the drawing commands queue; placing
the drawing request into a drawing requests queue if coordi-
nates for an image are not pending in the drawing commands,
and

wherein the method comprises: sending a notification to
the drawing requests queue if the drawing commands queue
receives a new drawing command comprising an image and
coordinates for an image.

15. The method of clause 10, comprising forwarding the
drawing request to an HTTP handler in response to a notifi-
cation from a drawing commands queue that a drawing com-
mand is pending for the web browser.

16. The method of clause 10, comprising placing the draw-
ing coordinates into a section of an HT'TP header, wherein the
facilitating providing the web browser drawing update com-
prises facilitating providing the image file and the drawing
coordinates together to the web browser in a single HTTP
transmission response for drawing a display image at the web
browser, wherein the display image represents the updated
portion of the image representing the entire remote desktop.

17. The method of clause 10, comprising facilitate provid-
ing script client code compatible with the web browser, to the
web browser, if the connection request from the web browser
comprises a request to connect to the remote machine.

18. A transcoding server (see, e.g., item 1900-D of FIG.
19D and item 1900-E of FIG. 19E) for facilitating accessing
and controlling a remote desktop of a remote machine (see,
e.g., 320 of FIG. 3A) in real time from a web browser (see,
e.g., 500 of FIG. 5) at a client device (see, e.g., 310 of FIG.
3A), the transcoding server comprising:

means for receiving a connection request from the web
browser utilizing HTTP (see, e.g., item 1902-D in FIG. 19D);

means for translating the connection request into a session
control command compatible with a remote desktop display
protocol (see, e.g., item 1904-D in FIG. 19D);

means for providing the session control command to a
remote desktop client of the transcoding server for providing
the session control command to a remote desktop server of the
remote machine and for establishing, controlling or terminat-
ing a remote desktop session with the remote desktop server
(see, e.g., item 1906-D in FIG. 19D);

means for receiving a user input request from the web
browser utilizing HTTP (see, e.g., item 1908-D in FIG. 19D),

means for translating the user input request into a remote
desktop input command compatible with the remote desktop
display protocol (see, e.g., item 1910-D in FIG. 19D);

means for providing the remote desktop input command to
the remote desktop client for providing the remote desktop
input command to the remote desktop server (see, e.g., item
1912-D in FIG. 19D),

means for receiving a remote desktop drawing command
from the remote desktop server via the remote desktop client
in response to the remote desktop input command, wherein
the remote desktop drawing command is compatible with the
remote desktop display protocol, and wherein the remote
desktop drawing command represents a portion of an entire
image of the remote desktop (see, e.g., item 1902-E in FIG.
19E);

means for translating the remote desktop drawing com-
mand into a graphics drawing command compatible with the
transcoding server (see, e.g., item 1904-E in FIG. 19E);

means for updating a portion of an image and coordinates
based on the graphics drawing command (see, e.g., item
1906-E in FIG. 19E);

means for generating an image file based on the updated
portion of the image (see, e.g., item 1908-E in FIG. 19E);

10

15

20

25

30

35

40

45

50

55

60

65

68

means for obtaining drawing coordinates based on the
coordinates (see, e.g., item 1910-E in FIG. 19E); and

means for facilitating providing a web browser drawing
update to the web browser in response to a drawing request
from the web browser, wherein the web browser drawing
update comprises the image file and the drawing coordinates,
and wherein the web browser drawing update is compatible
with the web browser (see, e.g., item 1912-E in FIG. 19E),

wherein the remote desktop drawing command represents
a portion of the entire remote desktop, and the image repre-
sents the entire remote desktop,

wherein the remote desktop display protocol is a push
protocol, and HTTP is a pull protocol.

19. The transcoding server of clause 18, wherein the user
input request comprises at least one of a mouse event, a
keyboard event, and a touch event.

20. The transcoding server of clause 18, wherein the ses-
sion control command comprises at least one of: a command
for starting the remote desktop session, a command for stop-
ping the remote desktop session, a credential, a setting, a
preference, and a command for passing at least one of a
credential, a setting, and a preference.

21. The transcoding server of clause 18, wherein the graph-
ics drawing command is a Java graphics drawing command,
wherein the transcoding server is a Java transcoding server,
and wherein the web browser is HTMLS5 compatible.

22. The transcoding server of clause 18, wherein the means
for updating a portion of an image and coordinates comprises
means for storing the portion of the image and the coordinates
into a drawing commands queue,

wherein the transcoding server comprises: means for
receiving the drawing request from the web browser utilizing
HTTP; means for forwarding the drawing request to an HTTP
handler if coordinates for an image are pending in the drawing
commands queue; means for placing the drawing request into
a drawing requests queue if coordinates for an image are not
pending in the drawing commands, and

wherein the transcoding server comprises: means for send-
ing a notification to the drawing requests queue if the drawing
commands queue receives a new drawing command compris-
ing an image and coordinates for an image.

23. The transcoding server of clause 18, comprising means
for forwarding the drawing request to an HT'TP handler in
response to a notification from a drawing commands queue
that a drawing command is pending for the web browser.

24. The transcoding server of clause 18, comprising means
for placing the drawing coordinates into a section of an HTTP
header, wherein the means for facilitating providing the web
browser drawing update comprises means for facilitating pro-
viding the image file and the drawing coordinates together to
the web browser in a single HTTP transmission response for
drawing a display image at the web browser, wherein the
display image represents the updated portion of the image
representing the entire remote desktop.

25. The transcoding server of clause 18, comprising means
for facilitate providing script client code compatible with the
web browser, to the web browser, if the connection request
from the web browser comprises a request to connect to the
remote machine.

26. A processor comprising modules configured to perform
the method of any one of the foregoing clauses.

27. A machine-readable storage medium comprising code
for causing the transcoding server to perform the method of
any one of the foregoing clauses.

28. The machine-readable storage medium of clause 27,
wherein the transcoding server comprises the machine-read-
able storage medium.

US 9,244,912 B1

69

29. An apparatus comprising means for performing the
method of any one of the foregoing clauses.

30. The apparatus of clause 29, wherein the apparatus
comprises a transcoding server.

31. The apparatus of clause 29, wherein the apparatus
comprises a processing system and a memory.

33. An apparatus comprising components operable to per-
form the method of any one of the foregoing clauses.

34. The apparatus of clause 33, wherein the apparatus
comprises a transcoding server.

35. The apparatus of clause 33, wherein the apparatus
comprises a processing system and a memory.

Tlustration of Method/ Apparatus/Machine Readable Stor-
age Medium for facilitating a remote desktop session
between a web browser at and a remote desktop server (de-
scribed as Clauses).

The subject technology is illustrated, for example, accord-
ing to various aspects described below. Various examples of
aspects of the subject technology are described as numbered
clauses (1, 2, 3, etc.) for convenience. These are provided as
examples, and do not limit the subject technology. It is noted
that any of the dependent clauses may be combined in any
combination, and placed into a respective independent clause.
Clause 1 below is presented, for example, with reference to
FIG. 20A. The other clauses can be presented in a similar
manner.

1. A method (see, e.g., method 2000-A of FIG. 20A) of
facilitating accessing and controlling a remote desktop of a
remote machine (see, e.g., 830 of FIG. 8A) in real time by a
web browser of a client device (see, e.g., 802 of FIG. 8A) via
a hypertext transfer protocol (HTTP) utilizing a web server
(see, e.g., 820 of FIG. 8A), the method comprising:

receiving, at the web server, a remote desktop drawing
command based on an image of the remote desktop of the
remote machine, wherein the remote desktop drawing com-
mand is compatible with a remote desktop display protocol
utilized by the remote machine (see, e.g., 2002-A of FIG.
20A);

translating, at the web server, the remote desktop drawing
command into a web browser drawing update that is compat-
ible with the web browser (see, e.g., 2004-A of FIG. 20A);
and

facilitating providing the web browser drawing update
from the web server to the web browser of the client device
utilizing HTTP during a remote desktop session between the
client device and the remote machine (see, e.g., 2006-A of
FIG. 20A),

wherein (i) the remote desktop display protocol is a push
protocol, (ii) HTTP is a pull protocol, and (iii) the web
browser comprises a windows web browser.

2. The method of clause 1, wherein the web browser draw-
ing update comprises an image file and drawing coordinates
for the image file that are recognizable and processable by the
windows web browser.

3. The method of clause 1, wherein the translating com-
prises:

translating the remote desktop drawing command into a
windows graphics drawing command;

updating a portion of a memory bitmap using the windows
graphics drawing command, wherein the updated portion of
the memory bitmap represents a portion of an entire image of
the remote desktop;

creating an image file from the memory bitmap; and

generating drawing coordinates for the image file,

wherein the web browser drawing update comprises the
image file and the drawing coordinates for the image file,

10

15

20

25

30

35

40

45

50

55

60

65

70

wherein the facilitating providing comprises placing the
drawing coordinates into an HTTP header,

wherein utilizing HTTP comprises using an HTTP control-
ler,

wherein the web server is configured to facilitate providing
an application framework for hosting one or more web appli-
cations comprising an ASPNET model-view-controller
(MVCQ), wherein the one or more web applications comprise
one or more HTTP handlers, and wherein the one or more
HTTP handlers comprise the HTTP controller of the ASP-
NET MVC.

4. The method of clause 1, wherein the translating com-
prises:

translating the remote desktop drawing command into a
graphics drawing command that is compatible with the win-
dows web server, wherein the graphics drawing command
includes coordinates;

extracting the coordinates from the graphics drawing com-
mand;

updating at least a portion of an oft-screen bitmap based on
the graphics drawing command, wherein the at least a portion
of the off-screen bitmap is associated with the coordinates,

wherein the off-screen bitmap is based on the image of the
remote desktop;

creating an image file including a windows image file
based on the at least a portion of the off-screen bitmap; and

wherein the web browser drawing update comprises the
image file and the coordinates.

5. The method of clause 1, wherein the web browser is an
HTMLS5 compatible web browser.

6. The method of clause 1, comprising:

receiving a user input request from the web browser, using
HTTP,

translating the user input request into an input command
compatible with the remote desktop display protocol; and

providing the input command to the remote desktop client
for accessing and controlling the remote desktop of the
remote machine during the remote desktop session,

wherein the web browser drawing update comprises an
image file including a windows image file and drawing coor-
dinates for the image file that are recognizable and process-
able by the windows web browser,

wherein the image file and the drawing coordinates repre-
sent a portion of an image of the remote desktop that has been
changed in response to the input command.

7. The method of clause 6, wherein the user input request
comprises at least one of amouse event, akeyboard event, and
a touch event.

8. The method of clause 1, wherein the remote desktop
drawing command comprises remote desktop drawing com-
mand parameters and bitmap data received from a remote
desktop server of the remote machine,

wherein the translating comprises one or more of: calcu-
lating new drawing command parameters based on the remote
desktop drawing command parameters; adjusting the remote
desktop drawing command parameters; and making adjust-
ments to the bitmap data.

9. The method of clause 1, wherein the remote desktop
drawing command comprises remote desktop drawing com-
mand parameters and bitmap data received from a remote
desktop server of the remote machine,

wherein the translating comprises making adjustments to
the bitmap data,

wherein the making adjustments comprises converting a
16-bit red-green-blue (RGB) 5-6-5 color format into a 32-bit
alpha-red-green-blue (ARGB) 8-8-8-8 format.

US 9,244,912 B1

71

10. The method of clause 1, wherein the web server is an
intermediary between the remote machine and the client
device, and wherein the web server is physically separate
from the remote machine.

11. A machine-readable storage medium (see, e.g., 1210,
1219 in FIGS. 12 and 2000-B of FIG. 20B) comprising
instructions stored therein, the instructions executable by one
or more processors (see, e.g., 1202) to perform one or more
operations, the instructions comprising:

code for causing one or more processors to facilitate
receiving a remote desktop drawing command based on an
image of a remote desktop of a remote machine, wherein the
remote desktop drawing command is compatible with a
remote desktop display protocol of the remote machine (see,
e.g., 2002-B of FIG. 20B);

code for causing one or more processors to translate the
remote desktop drawing command into a web browser draw-
ing update that is compatible with a web browser (see, e.g.,
2004-B of FIG. 20B); and

code for causing one or more processors to facilitate pro-
viding the web browser drawing update utilizing hypertext
transfer protocol (HTTP) during a remote desktop session
between a client device for the web browser and the remote
machine (see, e.g., 2006-B of FIG. 20B),

wherein (i) the remote desktop display protocol is a push
protocol, (ii) HTTP is a pull protocol, and (iii) the web
browser comprises a windows web browser.

12. The machine-readable storage medium of clause 11,
wherein the web browser drawing update comprises an image
file and drawing coordinates for the image file that are recog-
nizable and processable by the windows web browser.

13. The machine-readable storage medium of clause 11,
wherein the code for causing one or more processors to trans-
late comprises:

code for causing one or more processors to translate, at a
web server, the remote desktop drawing command into a
windows graphics drawing command;

code for causing one or more processors to update a portion
of a memory bitmap using the windows graphics drawing
command, wherein the updated portion of the memory bit-
map represents a portion of an image of the remote desktop;

code for causing one or more processors to create an image
file including a windows image file from the memory bitmap;
and

code for causing one or more processors to generate draw-
ing coordinates for the image file,

wherein the web browser drawing update comprises the
image file and the drawing coordinates for the image file,

wherein the code for causing one or more processors to
facilitate providing comprises code for causing one or more
processors to place the drawing coordinates into an HTTP
header,

wherein code for causing one or more processors to utilize
HTTP comprises code for causing one or more processors to
use an HTTP controller,

wherein the web server is configured to facilitate providing
an application framework for hosting one or more web appli-
cations, wherein the one or more web applications comprise
one or more HTTP handlers, and wherein the one or more
HTTP handlers comprise the HTTP controller.

14. The machine-readable storage medium of clause 11,
wherein the code for causing one or more processors to trans-
late comprises:

code for causing one or more processors to translate, at a
web server, the remote desktop drawing command into a

10

15

20

25

30

35

40

45

50

55

60

65

72

graphics drawing command that is compatible with the web
server, wherein the graphics drawing command includes
coordinates;

code for causing one or more processors to extract the
coordinates from the graphics drawing command;

code for causing one or more processors to update at least
aportion of an oft-screen bitmap based on the graphics draw-
ing command, wherein the at least a portion of the off-screen
bitmap is associated with the coordinates,

wherein the off-screen bitmap is based on the image of the
remote desktop;

code for causing one or more processors to create an image
file including a windows image file based on the at least a
portion of the off-screen bitmap; and

wherein the web browser drawing update comprises the
windows image file and the coordinates.

15. The machine-readable storage medium of clause 11,
wherein the web browser is an HTMLS5 compatible web
browser.

16. The machine-readable storage medium of clause 11,
wherein the instructions comprise:

code for causing one or more processors to facilitate
receiving a user input request from the web browser, using
HTTP,

code for causing one or more processors to translate the
user input request into an input command compatible with the
remote desktop display protocol; and

code for causing one or more processors to facilitate pro-
viding the input command to the remote desktop client for
accessing and controlling the remote desktop of the remote
machine during the remote desktop session;

wherein the web browser drawing update comprises an
image file including a windows image file and drawing coor-
dinates for the image file that are recognizable and process-
able by the windows web browser; and

wherein the image file and the drawing coordinates repre-
sent a portion of an image of the remote desktop that has been
changed in response to the input command.

17. The machine-readable storage medium of clause 16,
wherein the user input request comprises at least one of a
mouse event, a keyboard event, and a touch event.

18. The machine-readable storage medium of clause 11,
wherein the remote desktop drawing command comprises
remote desktop drawing command parameters and bitmap
data received from a remote desktop server of the remote
machine,

wherein the code for causing one or more processors to
translate comprises one or more of: code for causing one or
more processors to calculate new drawing command param-
eters based on the remote desktop drawing command param-
eters; code for causing one or more processors to adjust the
remote desktop drawing command parameters; and code for
causing one or more processors to make adjustments to the
bitmap data.

19. The machine-readable storage medium of clause 11,
wherein the remote desktop drawing command comprises
remote desktop drawing command parameters and bitmap
data received from a remote desktop server of the remote
machine,

wherein the code for causing one or more processors to
translate comprises code for causing one or more processors
to make adjustments to the bitmap data,

wherein the code for causing one or more processors to
make adjustments comprises code for causing one or more
processors to convert a 16-bit red-green-blue (RGB) 5-6-5
color format into a 32-bit alpha-red-green-blue (ARGB) 8-8-
8-8 format.

US 9,244,912 B1

73

20. The machine-readable storage medium of clause 11,
wherein the code for causing one or more processors to trans-
late is to be executed at a web server, and wherein the web
server is an intermediary between the remote machine and the
client device, and wherein the web server is physically sepa-
rate from the remote machine.

21. A computing machine comprising the machine-read-
able storage medium of clause 11, wherein the computing
machine is a web server.

22. An apparatus (see, e.g., 2000-C of FIG. 20C) for facili-
tating accessing and controlling a remote desktop of a remote
machine (see, e.g., 830 of FIG. 8A) in real time by a web
browser (see, e.g., 810 of FIG. 8A) ata client device (see, e.g.,
802 of FIG. 8A) via a hypertext transfer protocol (HTTP)
utilizing a web server (see, e.g., 820 of FIG. 8A), the appa-
ratus comprising:

means for receiving a remote desktop drawing command
based on an image of the remote desktop of the remote
machine, wherein the remote desktop drawing command is
compatible with a remote desktop display protocol utilized by
the remote machine (see, e.g., 2002-C of FIG. 20C);

means for translating the remote desktop drawing com-
mand into a web browser drawing update that is compatible
with the web browser (see, e.g., 2004-C of FIG. 20C); and

means for translating the remote desktop drawing com-
mand into a web browser drawing update that is compatible
with the web browser (see, e.g., 2006-C of FIG. 20C);

wherein (i) the remote desktop display protocol is a push
protocol, (ii) HTTP is a pull protocol, and (iii) the web
browser comprises a windows web browser.

23. The apparatus of clause 22, wherein the web browser
drawing update comprises an image file including a windows
image file and drawing coordinates for the image file that are
recognizable and processable by the windows web browser.

24. The apparatus of clause 22, wherein the means for
translating comprises:

means for translating the remote desktop drawing com-
mand into a windows graphics drawing command;

means for updating a portion of a memory bitmap using the
windows graphics drawing command, wherein the updated
portion of the memory bitmap represents a portion of an entire
image of the remote desktop session;

means for creating an image file including a windows
image file from the memory bitmap; and

means for generating drawing coordinates for the image
file,

wherein the web browser drawing update comprises the
image file and the drawing coordinates for the image file,

wherein the means for facilitating providing comprises
means for placing the drawing coordinates into an HTTP
header,

wherein utilizing HT'TP comprises utilizing an HT'TP con-
troller, and

wherein the web server is a windows web server that is
configured to facilitate providing an application framework
for hosting one or more web applications comprising an ASP-
NET model-view-controller (MVC), wherein the one or
more web applications comprise one or more HTTP handlers,
and wherein the one or more HTTP handlers comprise the
HTTP controller of the ASPNET MVC.

25. The apparatus of clause 22, wherein the means for
translating comprises:

means for translating the remote desktop drawing com-
mand into a graphics drawing command that is compatible
with the windows web server, wherein the graphics drawing
command includes coordinates;

10

15

20

25

30

35

40

45

50

55

60

65

74

means for extracting the coordinates from the graphics
drawing command;

means for updating at least a portion of an off-screen bit-
map based on the graphics drawing command, wherein the at
least a portion of the off-screen bitmap is associated with the
coordinates, wherein the off-screen bitmap is based on the
image of the entire remote desktop; and

means for creating an image file including a windows
image file based on the at least a portion of the off-screen
bitmap;

wherein the web browser drawing update comprises the
image file and the coordinates.

26. The apparatus of clause 22, wherein the web browser is
an HTMLS compatible web browser.

27. The apparatus of clause 22, comprising:

means for receiving a user input request from the web
browser, using HTTP;

means for translating the user input request into an input
command compatible with the remote desktop display proto-
col; and

means for providing the input command to the remote
desktop client for accessing and controlling the remote desk-
top of the remote machine during the remote desktop session;

wherein the web browser drawing update comprises an
image file including a windows image file and drawing coor-
dinates for the image file that are recognizable and process-
able by the windows web browser; and

wherein the image file and the drawing coordinates repre-
sent a portion of an image of the of the remote desktop that has
been changed in response to the input command.

28. The apparatus of clause 27, wherein the user input
request comprises at least one of a mouse event, a keyboard
event, and a touch event.

29. The apparatus of clause 22, wherein the remote desktop
drawing command comprises remote desktop drawing com-
mand parameters and bitmap data received from a remote
desktop server of the remote machine,

wherein the means for translating comprises one or more
of: means for calculating new drawing command parameters
based on the remote desktop drawing command parameters;
means for adjusting the remote desktop drawing command
parameters; and means for making adjustments to the bitmap
data.

30. The apparatus of clause 22, wherein the remote desktop
drawing command comprises remote desktop drawing com-
mand parameters and bitmap data received from a remote
desktop server,

wherein the means for translating comprises means for
making adjustments to the bitmap data of the remote
machine,

wherein the means for making adjustments comprises
means for converting a 16-bit red-green-blue (RGB) 5-6-5
color format into a 32-bit alpha-red-green-blue (ARGB) 8-8-
8-8 format.

31. The apparatus of clause 22, wherein the web server is an
intermediary between the remote machine and the client
device, and wherein the web server is physically separate
from the remote machine.

32. The apparatus of clause 22, wherein the apparatus
comprises the web server.

33. The apparatus of clause 22, wherein the apparatus
comprises a processing system and a memory.

Iustration of Method/ Apparatus/Machine Readable Stor-
age Medium for facilitating a remote desktop redrawing ses-
sion utilizing HTML (described as Clauses).

The subject technology is illustrated, for example, accord-
ing to various aspects described below. Various examples of

US 9,244,912 B1

75

aspects of the subject technology are described as numbered
clauses (1, 2, 3, etc.) for convenience. These are provided as
examples, and do not limit the subject technology. It is noted
that any of the dependent clauses may be combined in any
combination, and placed into a respective independent clause.
Clause 1 below is presented, for example, with reference to
FIG. 21A. The other clauses can be presented in a similar
manner.

1. A method (see, e.g., 2100-A of FIG. 21A), of facilitating
conducting a remote desktop session between a web browser
(see, e.g., 820 of FIG. 8A) of a client device and a remote
machine (see, e.g., 830 of FIG. 8A) via aweb server (see, e.g.,
820 of FIG. 8A) in real time and utilizing hypertext markup
language (HTML) that supports a two-dimensional (2D) can-
vas and dynamic drawing, the method comprising:

receiving, at the web server, a user input request from the
web browser of the client device for access and control of the
remote machine, wherein the web browser supports a 2D
canvas and dynamic drawing (see, e.g., 2102-A of FIG. 21A);

translating, at the web server, the user input request into an
input command compatible with a remote desktop display
protocol to be utilized by the web server for facilitating com-
munication with the remote machine (see, e.g., 2104-A of
FIG. 21A),

receiving, at the web server, a remote desktop drawing
command from the remote machine in response to the input
command (see, e.g., 2106-A of FIG. 21A);

translating, at the web server, the remote desktop drawing
command into a drawing update compatible with the hyper-
text markup language (see, e.g., 2108-A of FIG. 21A); and

facilitating providing the drawing update from the web
server to the web browser (see, e.g., 2110-A of FIG. 21A);

wherein the web server is an intermediary between the
remote machine and the client device, and wherein the web
server comprises a windows web server and is physically
separate from the remote machine.

2. The method of clause 1, wherein the web browser com-
prises a windows web browser and wherein the translating the
remote desktop drawing command comprises:

translating the remote desktop drawing command into a
windows graphics drawing command;

executing the windows graphics drawing command to
update a portion of a memory bitmap, wherein the memory
bitmap represents an image of a remote desktop of the remote
machine;

generating coordinates for the memory bitmap based on
the windows graphics drawing command;

forming an image file including a windows image file
based on the memory bitmap, wherein the image file is com-
patible with HTMLS; and

obtaining drawing coordinates for the image file based on
the coordinates for the memory bitmap, wherein the drawing
coordinates are compatible with HTMLS,

wherein the drawing update comprises the image file and
the drawing coordinates for the image file,

wherein the drawing update represents a portion of the
image of the remote desktop,

wherein the web browser comprises client script code;

wherein the method comprises receiving, at the web server,
drawing requests from the client script code of the web
browser,

wherein the facilitating providing the drawing update com-
prises facilitating providing the drawing update from the web
server to the client script code of the web browser in response
to one of the drawing requests from the client script code of
the web browser.

25

35

40

45

55

76

3. The method of clause 1, wherein the translating the
remote desktop drawing command comprises:

translating the remote desktop drawing command into a
graphics drawing command compatible with the windows
web server;

updating a portion of a bitmap based on the graphics draw-
ing command, wherein the updated portion of the bitmap
represents a portion of an image of a remote desktop of the
remote machine thathas changed relative to a previous graph-
ics drawing command;

generating coordinates for the bitmap;

forming an image file including a windows image file
based on the bitmap, wherein the image file is HITMLS5 com-
patible; and

obtaining drawing coordinates for the image file, wherein
the drawing coordinates are compatible with HTMLS5,

wherein the drawing update comprises the image file and
the drawing coordinates for the image file,

wherein the method comprises receiving, at the web server,
drawing requests from the web browser,

wherein the facilitating providing the drawing update com-
prises facilitating providing the drawing update from the web
server to the web browser in response to one of the drawing
requests from the web browser.

4. The method of clause 1, wherein the web server com-
prises a remote desktop client wrapper configured to translate
the user input request into the input command compatible
with the remote desktop display protocol and to translate the
remote desktop drawing command into the graphics drawing
command compatible with a windows web browser.

5. The method of clause 1, comprising receiving long asyn-
chronous HTTP requests from the web browser, wherein the
asynchronous HTTP requests comprise drawing requests and
the web browser comprises a windows web browser.

6. The method of clause 1, comprising receiving from the
web browser an initial HTTP request comprising a uniform
resource locator (URL) of the remote machine.

7. The method of clause 6, comprising facilitating provid-
ing a script client code to the web browser in response to the
initial HTTP request for the URL of the remote machine,
wherein the script client code is compatible with HTMLS.

8. The method of clause 1, wherein the remote desktop
drawing command is compatible with the remote desktop
display protocol, wherein the remote desktop display proto-
col is a push protocol, and wherein the facilitating providing
the drawing update comprises facilitating providing the draw-
ing update using HTTP that is a pull protocol.

9. The method of clause 1, wherein dynamic drawing com-
prises drawing in real time a portion of the 2D canvas, rather
than drawing the entire 2D canvas, in response to one or more
drawing requests of a script client of the web browser.

10. The method of clause 1, wherein the 2D canvas is
updatable by a portion at a time according to a set of coordi-
nates.

11. A machine-readable storage medium (see, e.g., 1210,
1219 in FIGS. 12 and 2100-B of FIG. 21B) comprising
instructions stored therein, the instructions executable by one
ormore processors (see, e.g., 1202), the instructions compris-
ing:

code for causing one or more processors to facilitate
receiving a user input request from a web browser of a client
device for access and control of a remote machine, wherein
the web browser supports a 2D canvas and dynamic drawing
(see, e.g., 2102-B of FIG. 21B);

code for causing one or more processors to translate the
user input request into an input command compatible with a

US 9,244,912 B1

77

remote desktop display protocol to be utilized for facilitating
communication with the remote machine (see, e.g., 2104-B of
FIG. 21B);

code for causing one or more processors to facilitate
receiving a remote desktop drawing command from the
remote machine in response to the input command (see, e.g.,
2106-B of FIG. 21B);

code for causing one or more processors to translate the
remote desktop drawing command into a drawing update
compatible with hypertext markup language (sece, e.g.,
2108-B of FIG. 21B); and

code for causing one or more processors to facilitate pro-
viding the drawing update to the web browser (see, e.g.,
2110-B of FIG. 21B).

12. The machine-readable storage medium of clause 11,
wherein the web browser comprises a windows web browser
and wherein the code for causing one or more processors to
translate the remote desktop drawing command comprises:

code for causing one or more processors to translate the
remote desktop drawing command into a windows graphics
drawing command;

code for causing one or more processors to execute the
windows graphics drawing command to update a portion of a
windows graphics application programming interface (API)
memory bitmap, wherein the windows graphics API memory
bitmap represents an image of a remote desktop of the remote
machine;

code for causing one or more processors to generate coor-
dinates for the updated portion of the windows graphics API
memory bitmap based on the windows graphics drawing
command;

code for causing one or more processors to form an image
file including a windows image file based on the updated
portion of the windows graphics APl memory bitmap,
wherein the image file is compatible with HTMLS5; and

code for causing one or more processors to obtain drawing
coordinates for the image file based on the coordinates for the
updated portion of the windows graphics APl memory bit-
map, wherein the drawing coordinates are compatible with
HTMLS,

wherein the drawing update comprises the image file and
the drawing coordinates for the image file,

wherein the drawing update represents a portion of the
image of the remote desktop,

wherein the web browser comprises client script code;

wherein the instructions comprise code for causing one or
more processors to facilitate receiving, at a web server, draw-
ing requests from the client script code of the web browser,

wherein the code for causing one or more processors to
facilitate providing the drawing update comprises code for
causing one or more processors to facilitate providing the
drawing update from the web server to the client script code
of'the web browser in response to one of the drawing requests
from the client script code of the web browser.

13. The machine-readable storage medium of clause 11,
wherein the code for causing one or more processors to trans-
late the remote desktop drawing command comprises:

code for causing one or more processors to translate the
remote desktop drawing command into a graphics drawing
command compatible with the web server;

code for causing one or more processors to update a portion
of'abitmap based on the graphics drawing command, wherein
the updated portion of the bitmap represents a portion of an
image of a remote desktop of the remote machine that has
changed relative to a previous graphics drawing command;

code for causing one or more processors to generate coor-
dinates for the updated portion of the bitmap;

10

15

20

25

30

35

40

45

50

55

60

65

78

code for causing one or more processors to form an image
file including a windows image file based on the updated
portion of the bitmap, wherein the image file is HTML5
compatible; and

code for causing one or more processors to obtain drawing
coordinates for the image file, wherein the drawing coordi-
nates are compatible with HTMLS,

wherein the drawing update comprises the image file and
the drawing coordinates for the image file,

wherein the instructions comprise code for causing one or
more processors to facilitate receiving, at the web server,
drawing requests from the web browser, and

wherein the code for causing one or more processors to
facilitate providing the drawing update comprises code for
causing one or more processors to facilitate providing the
drawing update to the web browser in response to one of the
drawing requests from the web browser.

14. The machine-readable storage medium of clause 11,
wherein the remote desktop display protocol is to be utilized
by a web server, wherein the web server is an intermediary
between the remote machine and the client device, and
wherein the web server comprises a windows web server and
is physically separate from the remote machine, wherein the
web server comprises a remote desktop client wrapper con-
figured to translate the user input request into the input com-
mand compatible with the remote desktop display protocol
and to translate the remote desktop drawing command into
the graphics drawing command compatible with a windows
web browser.

15. The machine-readable storage medium of clause 11,
wherein the instructions comprise code for causing one or
more processors to facilitate receiving asynchronous HTTP
requests from the web browser, wherein the asynchronous
HTTP requests comprise drawing requests and the web
browser comprises a windows web browser.

16. The machine-readable storage medium of clause 11,
wherein the instructions comprise code for causing one or
more processors to facilitate receiving from the web browser
an initial HTTP request comprising a uniform resource loca-
tor (URL) of the remote machine.

17. The machine-readable storage medium of clause 16,
wherein the instructions comprise code for causing one or
more processors to facilitate providing a script client code to
the web browser in response to the initial HTTP request for
the URL of'the remote machine, wherein the script client code
is compatible with HTMLS.

18. The machine-readable storage medium of clause 11,
wherein the remote desktop drawing command is compatible
with the remote desktop display protocol, wherein the remote
desktop display protocol is a push protocol, wherein the code
for causing one or more processors to facilitate providing the
drawing update comprises code for causing one or more
processors to facilitate providing the drawing update using
HTTPthat is a pull protocol, and wherein the drawing updates
are compatible with a windows graphic protocol.

19. The machine-readable storage medium of clause 11,
wherein dynamic drawing comprises drawing in real time a
portion of the 2D canvas, rather than drawing the entire 2D
canvas, inresponse to one or more drawing requests ofa script
client of the web browser.

20. The machine-readable storage medium of clause 11,
wherein the 2D canvas is updatable by a portion at a time
according to a set of coordinates.

21. A computing machine comprising the machine-read-
able storage medium of clause 11, wherein the computing
machine is a web server.

US 9,244,912 B1

79

22. An apparatus (see, e.g., 2100-C of FIG. 21C) for facili-
tating conducting a remote desktop session between a web
browser of a client device and a remote machine via a web
server in real time and utilizing hypertext markup language
that supports a two-dimensional (2D) canvas and dynamic
drawing, the apparatus comprising:

means for receiving a user input request from the web
browser of the client device for access and control of the
remote machine, wherein the web browser supports a 2D
canvas and dynamic drawing (see, e.g., 2102-C of FIG. 21C);

means for translating the user input request into an input
command compatible with a remote desktop display protocol
to be utilized by the web server for facilitating communica-
tion with the remote machine (see, e.g., 2104-C of F1G. 21C);

means for receiving a remote desktop drawing command
from the remote machine in response to the input command
(see, e.g., 2106-C of FIG. 21C);

means for translating the remote desktop drawing com-
mand into a drawing update compatible with the hypertext
markup language (see, e.g., 2108-C of FIG. 21C); and

means for facilitating providing the drawing update from
the web server to the web browser (see, e.g., 2110-C of FIG.
210);

wherein the web server is an intermediary between the
remote machine and the client device, and wherein the web
server comprises a windows web server and is physically
separate from the remote machine.

23. The apparatus of clause 22, wherein the web browser
comprises a windows web browser and means for translating
the remote desktop drawing command comprises:

means for translating the remote desktop drawing com-
mand into a windows graphics drawing command;

means for executing the windows graphics drawing com-
mand to update a portion of a memory bitmap, wherein the
memory bitmap represents an image of a remote desktop of
the remote machine;

means for generating coordinates for the updated portion
of the memory bitmap based on the windows graphics draw-
ing command;

means for forming an image file including a windows
image file based on the updated portion of the memory bit-
map, wherein the image file is compatible with HTMLS; and

means for obtaining drawing coordinates for the image file
based on the coordinates for the memory bitmap, wherein the
drawing coordinates are compatible with HTMLS5;

wherein the drawing update comprises the image file and
the drawing coordinates for the image file,

wherein the drawing update represents a portion of the
image of the remote desktop,

wherein the web browser temporarily comprises client
script code during the remote desktop session while the
remote desktop session persists;

wherein the apparatus comprises means for receiving
drawing requests from the client script code of the web
browser,

wherein the means for facilitating providing the drawing
update comprises means for facilitating providing the draw-
ing update from the web server to the client script code of the
web browser in response to one of the drawing requests from
the client script code of the web browser.

24. The apparatus of clause 22, wherein the means for
translating the remote desktop drawing command comprises:

means for translating the remote desktop drawing com-
mand into a graphics drawing command compatible with the
web server;

means for updating a portion of a bitmap based on the
graphics drawing command, wherein the updated portion of

25

30

40

45

55

60

65

80

the bitmap represents a portion of an image of a remote
desktop of the remote machine that has changed relative to a
previous graphics drawing command;

means for generating coordinates for the bitmap;

means for forming an image file including a windows
image file based on the bitmap, wherein the image file is
HTMLS5 compatible; and

means for obtaining drawing coordinates for the image file,
wherein the drawing coordinates are compatible with
HTMLS,

wherein the drawing update comprises the image file and
the drawing coordinates for the image file,

wherein the apparatus comprises means for receiving
drawing requests from the web browser,

wherein the means for facilitating providing the drawing
update comprises means for facilitating providing the draw-
ing update from the web server to the web browser in response
to one of the drawing requests from the web browser.

25. The apparatus of clause 22, wherein the web server
comprises a remote desktop client wrapper configured to
translate the user input request into the input command com-
patible with the remote desktop display protocol and to trans-
late the remote desktop drawing command into the graphics
drawing command compatible with a windows web browser.

26. The apparatus of clause 22, comprising means for
receiving asynchronous HTTP requests from the web
browser, wherein the asynchronous HTTP requests comprise
drawing requests and the web browser comprises a windows
web browser.

27. The apparatus of clause 22, comprising means for
receiving from the web browser an initial HTTP request com-
prising a uniform resource locator (URL) of the remote
machine.

28. The apparatus of clause 27, comprising means for
facilitating providing a script client code to the web browser
in response to the initial HTTP request for the URL of the
remote machine, wherein the script client code is compatible
with HTMLS.

29. The apparatus of clause 22, wherein the remote desktop
drawing command is compatible with the remote desktop
display protocol, wherein the remote desktop display proto-
col is a push protocol, wherein the means for facilitating
providing the drawing update comprises means for facilitat-
ing providing the drawing update using HTTP that is a pull
protocol, and wherein the drawing update is compatible with
a windows web browser.

30. The apparatus of clause 22, wherein dynamic drawing
comprises drawing in real time a portion of the 2D canvas,
rather than drawing the entire 2D canvas, in response to one or
more drawing requests of a script client of the web browser.

31. The apparatus of clause 22, wherein the 2D canvas is
updatable by a portion at a time according to a set of coordi-
nates.

32. The apparatus of clause 22, wherein the apparatus is the
web server.

33. The apparatus of clause 22, wherein the apparatus
comprises a processing system and memory.

Iustration of Method/ Apparatus/Machine Readable Stor-
age Medium for a remote desktop session, utilizing HTTP
header (described as Clauses).

The subject technology is illustrated, for example, accord-
ing to various aspects described below. Various examples of
aspects of the subject technology are described as numbered
clauses (1, 2, 3, etc.) for convenience. These are provided as
examples, and do not limit the subject technology. It is noted
that any of the dependent clauses may be combined in any
combination, and placed into a respective independent clause.

US 9,244,912 B1

81

Clause 1 below is presented, for example, with reference to
FIG. 22A. The other clauses can be presented in a similar
manner.

1. A method (see, e.g., 2200-A of FIG. 22A) of facilitating
a remote desktop session between a web browser (see, e.g.,
810 of FIG. 8A) of a client device (see, e.g., 802 of FIG. 8A)
and a remote machine (see, e.g., 830 of FIG. 8A) through a
web server, utilizing hypertext transfer protocol (HTTP)
headers for remote desktop session drawing, the method com-
prising:

receiving, at the web server, drawing requests from the web
browser of the client device (see, e.g., 2202-A of FIG. 22A);

receiving, at the web server, a remote desktop drawing
command from the remote machine using a remote desktop
display protocol, wherein the remote desktop drawing com-
mand is based on an image of a remote desktop of the remote
machine (see, e.g., 2204-A of FIG. 22A);

translating, at the web server, the remote desktop drawing
command into a display image and drawing coordinates for
the display image (see, e.g., 2206-A of FIG. 22A);

placing, at the web server, the drawing coordinates into an
HTTP response header (see, e.g., 2208-A of FIG. 22A); and

in response to at least one of the drawing requests, facili-
tating providing the display image and the drawing coordi-
nates together to the web browser in a single HTTP response,
for drawing the display image of the remote desktop at the
web browser, wherein the single HTTP response comprises
the HTTP response header (see, e.g., 2210-A of FIG. 22A),

wherein (i) the remote desktop display protocol is a push
protocol, and (i1) HTTP is a pull protocol, and (iii) the web
browser comprises a windows web browser.

2. The method of clause 1, wherein the web server com-
prises a windows web server, and wherein the translating
comprises:

translating the remote desktop drawing command into a
windows graphics drawing command, wherein the web
server comprises one or more web applications including one
or more HTTP handlers;

updating a portion of a memory bitmap corresponding to
the remote desktop in response to the windows graphics
drawing command;

generating coordinates for the updated portion of the
memory bitmap from the windows graphics drawing com-
mand;

generating the display image compatible with the web
browser based on the memory bitmap; and

obtaining the drawing coordinates for the display image
based on the coordinates for the memory bitmap,

wherein the display image and the drawing coordinates are
compatible with hypertext markup language (HTML),

wherein the updated portion of the memory bitmap repre-
sents a portion of an image of the remote desktop of the
remote machine,

wherein the display image and the drawing coordinates
represent the portion of the image of the remote desktop of the
remote machine.

3. The method of clause 1, wherein the web server is an
intermediary between the remote machine and the client
device, and wherein the web server is physically separate
from the remote machine.

4. The method of clause 1, wherein the remote desktop
drawing command comprises coordinates of a region of the
remote desktop that has changed relative to a previous remote
desktop drawing command, wherein the coordinates specify
a redrawing region, and wherein the display image and the
drawing coordinates are compatible with windows graphic
protocol and HTMLS.

10

15

20

25

30

35

40

45

50

55

60

65

82

5. The method of clause 1, wherein the display image
comprises at least one of a scaled image of the remote desktop
or a display image comprising an offset image of the remote
desktop.

6. A method of facilitating a remote desktop session
between a web browser of a client device and a remote
machine through a web server, utilizing asynchronous han-
dling of requests to reduce traffic to the client device, the
method comprising:

facilitating receiving, at the web server, a plurality of draw-
ing requests from the web browser of the client device, using
HTTP, wherein HTTP is a pull protocol;

handling, at the web server, the plurality of drawing
requests as asynchronous requests;

facilitating receiving, at the web server, a remote desktop
drawing command from the remote machine;

translating, at the web server, the remote desktop drawing
command into a web browser drawing update, wherein the
remote desktop drawing command is compatible with a push
protocol, wherein the web browser drawing update is com-
patible with HTTP; and

facilitating providing the web browser drawing update
from the web server to the web browser of the client device,
utilizing HTTP, as a response to at least one of the plurality of
drawing requests from the web browser,

wherein the web server comprises a windows web server
and the web browser is a windows web browser.

7.The method of clause 6, wherein the handling comprises:

determining whether a drawing command is pending at the
web server for the web browser;

if there is no pending drawing command, then storing the
plurality of drawing requests in a drawing requests queue as
asynchronous requests; and

if there is a pending drawing command, then providing at
least one of the plurality of drawing requests to an HTTP
handler module in the web server to allow the HTTP handler
module to serve the pending drawing command in response to
the at least one of the plurality of drawing requests.

8. The method of clause 6, wherein the remote desktop
drawing command represents a portion of an image of a
remote desktop of the remote machine,

wherein the translating comprises:

translating the remote desktop drawing command into a

windows graphics drawing command;

updating a portion of a memory bitmap of the image of the

remote desktop in response to the windows graphics
drawing command;

generating coordinates of the updated portion of the

memory bitmap based on the windows graphics drawing
command;

generating an image file based on the updated portion of the

memory bitmap, wherein the image file is compatible
with the web browser, wherein the image file comprises
a windows image file compatible with the windows web
browser; and

obtaining drawing coordinates for the image file based on

the coordinates of the updated portion of the memory
bitmap,

wherein the web browser drawing update comprises the
image file and the drawing coordinates.

9. The method of clause 7, wherein the facilitating provid-
ing comprises:

placing, at the HTTP handler module the drawing coordi-
nates into an HTTP header of a single HTTP transmission
response to the web browser;

including, at the HT'TP handler module, the image file into
the single HTTP transmission response to the web browser to

US 9,244,912 B1

83

facilitate providing the image file and the drawing coordi-
nates together to the web browser in the single HT'TP trans-
mission response; and

when a drawing commands queue has new coordinates,
sending a notification to the drawing requests queue to allow
at least one of the plurality of drawing requests in the drawing
requests queue to be forwarded to the HT TP handler module.

10. The method of clause 6, comprising:

receiving a request from the web browser to connect to the
remote machine;

facilitating providing a client script code to the web
browser in response to the request to connect to the remote
machine,

wherein the receiving the plurality of drawing requests
comprises receiving the plurality of drawing requests from
the client script code,

wherein the facilitating providing the web browser draw-
ing update comprises facilitating providing the web browser
drawing update to the client script code; and

facilitating deleting the client script code from the web
browser when the remote desktop session is terminated.

11. The method of clause 6, comprising:

receiving, at the web server, a user input request from the
web browser for accessing or controlling a remote desktop of
the remote machine,

translating, at the web server, the user input request into an
input command compatible with the push protocol;

facilitating providing the input command to the remote
machine utilizing the push protocol,

wherein the receiving the remote desktop drawing com-
mand comprises receiving the remote desktop drawing com-
mand in response to the input command.

12. A machine-readable storage medium (see, e.g., 1210,
1219 in FIGS. 12 and 2200-B of FIG. 22B) comprising
instructions stored therein, the instructions executable by one
or more processors to perform one or more operations, the
instructions comprising:

code for causing one or more processors to facilitate
receiving drawing requests from a web browser of a client
device (see, e.g., 2202-B of FIG. 22B);

code for causing one or more processors to facilitate
receiving a remote desktop drawing command from a module
of'aremote machine using a remote desktop display protocol,
wherein the remote desktop drawing command is based on an
image of a remote desktop of the remote machine (see, e.g.,
2204-B of FIG. 22B);

code for causing one or more processors to translate the
remote desktop drawing command into a display image and
drawing coordinates for the display image (see, e.g., 2206-B
of FIG. 22B);

code for causing one or more processors to place the draw-
ing coordinates into a hypertext transfer protocol (HTTP)
response header (see, e.g., 2208-B of FIG. 22B); and

code for causing one or more processors to facilitate pro-
viding the display image and the drawing coordinates
together to the web browser in a single HTTP response to at
least one of the drawing requests, for drawing the display
image of the remote desktop at the web browser, wherein the
single HTTP response comprises the HT'TP response header
(see, e.g., 2210-B of FIG. 22B),

wherein the remote desktop display protocol is a push
protocol, and HTTP is a pull protocol.

13. The machine-readable storage medium of clause 12,
wherein the code for causing one or more processors to trans-
late is to be executed at a web server, wherein the web server
comprises a windows web server, and wherein the code for
causing one or more processors to translate comprises:

10

20

25

30

40

45

50

60

84

code for causing one or more processors to translate the
remote desktop drawing command into a windows graphics
drawing command;

code for causing one or more processors to update a portion
of'a memory bitmap of the remote desktop in response to the
windows graphics drawing command;

code for causing one or more processors to generate coor-
dinates for the updated portion of the memory bitmap from
the windows graphics drawing command;

code for causing one or more processors to generate the
display image compatible with the web browser based on the
updated portion of the memory bitmap; and

code for causing one or more processors to obtain the
drawing coordinates for the display image based on the coor-
dinates for the updated portion of the memory bitmap,

wherein the display image and the drawing coordinates are
compatible with hypertext markup language (HTML),

wherein the updated portion of the memory bitmap repre-
sents a portion of an image of the remote desktop of the
remote machine,

wherein the display image and the drawing coordinates
represent the portion of the image of the remote desktop of the
remote machine.

14. The machine-readable storage medium of clause 12,
wherein the remote desktop drawing command comprises
coordinates of a region of the remote desktop that has
changed relative to a previous remote desktop drawing com-
mand, wherein the coordinates specify a redrawing region,
and wherein the display image and the drawing coordinates
are compatible with windows graphic protocol and HTMLS5.

15. The machine-readable storage medium of clause 12,
wherein the display image comprises at least one of a scaled
image ofthe remote desktop or a display image comprising an
offset image of the remote desktop.

16. A machine-readable storage medium comprising
instructions stored therein, the instructions executable by one
or more processors to perform one or more operations, the
instructions comprising:

code for causing one or more processors to facilitate
receiving a plurality of drawing requests from a web browser
ofa client device, using a hypertext transfer protocol (HTTP),
wherein HTTP is a pull protocol;

code for causing one or more processors to handle the
plurality of drawing requests as asynchronous requests;

code for causing one or more processors to facilitate
receiving a remote desktop drawing command from a module
of a remote machine;

code for causing one or more processors to translate the
remote desktop drawing command into a web browser draw-
ing update, wherein the remote desktop drawing command is
compatible with a push protocol, wherein the web browser
drawing update is compatible with HTTP; and

code for causing one or more processors to facilitate pro-
viding the web browser drawing update to the web browser of
the client device, utilizing HTTP, as a response to at least one
of the plurality of drawing requests from the web browser.

17. The machine-readable storage medium of clause 16,
wherein the code for causing one or more processors to
handle comprises:

code for causing one or more processors to determine
whether a drawing command is pending at a web server for
the web browser;

if there is no pending drawing command, then code for
causing one or more processors to store the plurality of draw-
ing requests in a drawing requests queue as asynchronous
requests; and

US 9,244,912 B1

85

if there is a pending drawing command, then code for
causing one or more processors to facilitate providing at least
one of the plurality of drawing requests to an HTTP handler
module in the web server to allow the HT'TP handler module
to serve the pending drawing command in response to the at
least one of the plurality of drawing requests.

18. The machine-readable storage medium of clause 16,
wherein the remote desktop drawing command represents a
portion of an image of a remote desktop of the remote
machine,

wherein the code for causing one or more processors to
translate comprises:

code for causing one or more processors to translate the

remote desktop drawing command into a windows
graphics drawing command;
code for causing one or more processors to update a portion
of'a memory bitmap of the image of the remote desktop
in response to the windows graphics drawing command;

code for causing one or more processors to generate coor-
dinates of the updated portion of the memory bitmap
based on the windows graphics drawing command;

code for causing one or more processors to generate an
image file based on the updated portion of the memory
bitmap, wherein the image file is compatible with the
web browser; and

code for causing one or more processors to obtain drawing

coordinates for the image file based on the coordinates
of the updated portion of the memory bitmap,

wherein the web browser drawing update comprises the
image file and the drawing coordinates.

19. The machine-readable storage medium of clause 17,
wherein the code for causing one or more processors to facili-
tate providing comprises:

code for causing one or more processors to place, at the
HTTP handler module, the drawing coordinates into an
HTTP header of a single HTTP transmission response to the
web browser;

code for causing one or more processors to include, at the
HTTP handler module, the image file into the single HTTP
transmission response to the web browser to facilitate provid-
ing the image file and the drawing coordinates together to the
web browser in the single HTTP transmission response; and

code for causing one or more processors to, when a draw-
ing commands queue has new coordinates, send a notification
to the drawing requests queue to allow at least one of the
plurality of drawing requests in the drawing requests queue to
be forwarded to the HTTP handler module.

20. The machine-readable storage medium of clause 16,
wherein the instructions comprise:

code for causing one or more processors to facilitate
receiving a request from the web browser to connect to the
remote machine;

code for causing one or more processors to facilitate pro-
viding a client script code to the web browser in response to
the request to connect to the remote machine,

wherein the code for causing one or more processors to
facilitate receiving the plurality of drawing requests com-
prises code for causing one or more processors to facilitate
receiving the plurality of drawing requests from the client
script code,

wherein the code for causing one or more processors to
facilitate providing the web browser drawing update com-
prises code for causing one or more processors to facilitate
providing the web browser drawing update to the client script
code; and

10

15

20

25

30

35

40

45

50

55

60

65

86

code for causing one or more processors to facilitate delet-
ing the client script code from the web browser when the
remote desktop session is terminated.

21. The machine-readable storage medium of clause 16,
wherein the instructions comprise:

code for causing one or more processors to facilitate
receiving, at a web server, a user input request from the web
browser for accessing or controlling a remote desktop of the
remote machine,

code for causing one or more processors to translate, at the
web server, the user input request into an input command
compatible with the push protocol;

code for causing one or more processors to facilitate pro-
viding the input command to the remote machine utilizing the
push protocol,

wherein the code for causing one or more processors to
facilitate receiving the remote desktop drawing command
comprises code for causing one or more processors to facili-
tate receiving the remote desktop drawing command in
response to the input command.

22. A computing machine comprising the machine-read-
able storage medium of clause 12, wherein the computing
machine is a web server.

23. An apparatus (see, e.g., 2200-C of FIG. 22C) for facili-
tating a remote desktop session between a web browser of a
client device and a remote machine through a web server,
utilizing hypertext transfer protocol (HTTP) headers of
HTTP for remote desktop session drawing, the apparatus
comprising:

means for receiving drawing requests from the web
browser of the client device (see, e.g., 2202-C of FIG. 22C);

means for receiving a remote desktop drawing command
from the remote machine using a remote desktop display
protocol, wherein the remote desktop drawing command is
based on an image of a remote desktop of the remote machine
(see, e.g., 2204-C of FIG. 22C);

means for translating the remote desktop drawing com-
mand into a display image and drawing coordinates for the
display image (see, e.g., 2206-C of FIG. 22C);

means for placing the drawing coordinates into an HTTP
response header (see, e.g., 2208-C of FIG. 22C); and

means for, in response to at least one of the drawing
requests, facilitating providing the display image and the
drawing coordinates together to the web browser in a single
HTTP response, for drawing the display image of the remote
desktop at the web browser, wherein the single HTTP
response comprises the HTTP response header (see, e.g.,
2210-C of FIG. 220),

wherein (i) the remote desktop display protocol is a push
protocol, and (ii) HTTP is a pull protocol, and (iii) the web
browser comprises a windows web browser.

24. The apparatus of clause 23, wherein the means for
translating comprises:

means for translating the remote desktop drawing com-
mand into a windows graphics drawing command, wherein
the web server comprises one or more web applications
including one or more HTTP handlers;

means for updating a portion of a memory bitmap of the
remote desktop in response to the windows graphics drawing
command;

means for generating coordinates for the updated portion
of the memory bitmap from the windows graphics drawing
command;

means for generating the display image compatible with
the web browser based on the updated portion of the memory
bitmap; and

US 9,244,912 B1

87

means for obtaining the drawing coordinates for the dis-
play image based on the coordinates for the updated portion
of the memory bitmap,

wherein the display image and the drawing coordinates are
compatible with HTML,,

wherein the updated portion of the memory bitmap repre-
sents a portion of an image of the remote desktop of the
remote machine,

wherein the display image and the drawing coordinates
represent the portion of the image of the remote desktop of the
remote machine.

25. The apparatus of clause 23, wherein the remote desktop
drawing command comprises coordinates of a region of the
remote desktop that has changed relative to a previous remote
desktop drawing command, wherein the coordinates specify
a redrawing region, and wherein the display image and the
drawing coordinates are compatible with windows graphic
protocol and HTMLS.

26. The apparatus of clause 23, wherein the display image
comprises at least one of a scaled image of the remote desktop
or a display image comprising an offset image of the remote
desktop.

27.The apparatus of clause 23, wherein the web server is an
intermediary between the remote machine and the client
device, and wherein the web server is physically separate
from the remote machine.

28. An apparatus for facilitating a remote desktop session
between a web browser of a client device and a remote
machine through a web server, utilizing asynchronous han-
dling of requests to reduce traffic to the client device, the
apparatus comprising:

means for receiving a plurality of drawing requests from
the web browser of the client device, using HTTP, wherein
HTTP is a pull protocol;

means for handling the plurality of drawing requests as
asynchronous requests;

means for receiving a remote desktop drawing command
from the remote machine;

means for translating the remote desktop drawing com-
mand into a web browser drawing update, wherein the remote
desktop drawing command is compatible with a push proto-
col, wherein the web browser drawing update is compatible
with HTTP; and

means for facilitating providing the web browser drawing
update from the web server to the web browser of the client
device, utilizing HTTP, as a response to at least one of the
plurality of drawing requests from the web browser,

wherein the web server comprises a windows web server
and the web browser is a windows web browser.

29. The apparatus of clause 28, wherein the means for
handling comprises:

means for determining whether a drawing command is
pending at the web server for the web browser;

means for storing the plurality of drawing requests in a
drawing requests queue as asynchronous requests, if there is
no pending drawing command; and

means for providing at least one of the plurality of drawing
requests to an HTTP handler module in the web server to
allow the HTTP handler module to serve the pending drawing
command in response to the at least one of the plurality of
drawing requests, if there is a pending drawing command.

30. The apparatus of clause 28, wherein the remote desktop
drawing command represents a portion of an image of a
remote desktop of the remote machine,

wherein the means for translating comprises:

means for translating the remote desktop drawing com-

mand into a windows graphics drawing command;

20

25

40

45

65

88

means for updating a portion of a memory bitmap of the
image of the remote desktop in response to the windows
graphics drawing command;

means for generating coordinates of the updated portion of

the memory bitmap based on the windows graphics
drawing command;

means for generating an image file based on the updated

portion of the memory bitmap, wherein the image file is
compatible with the web browser, wherein the image file
includes a windows image file compatible with windows
web browser; and

means for obtaining drawing coordinates for the image file

based on the coordinates of the updated portion of the
memory bitmap,

wherein the web browser drawing update comprises the
image file and the drawing coordinates.

31. The apparatus of clause 28, wherein the means for
facilitating providing comprises:

means for placing the drawing coordinates into an HTTP
header of a single HTTP transmission response to the web
browser;

means for including the image file into the single HTTP
transmission response to the web browser to facilitate provid-
ing the image file and the drawing coordinates together to the
web browser in the single HTTP transmission response; and

means for sending a notification to the drawing requests
queue to allow at least one of the plurality of drawing requests
in the drawing requests queue to be forwarded to the HTTP
handler module, when a drawing commands queue has new
coordinates.

32. The apparatus of clause 28, comprising:

means for receiving a request from the web browser to
connect to the remote machine;

means for facilitating providing a client script code to the
web browser in response to the request to connect to the
remote machine,

wherein the means for receiving the plurality of drawing
requests comprises means for receiving the plurality of draw-
ing requests from the client script code,

wherein the means for facilitating providing the web
browser drawing update comprises means for facilitating pro-
viding the web browser drawing update to the client script
code; and

means for facilitating deleting the client script code from
the web browser when the remote desktop session is termi-
nated.

33. The apparatus of clause 28, comprising:

means for receiving a user input request from the web
browser for accessing or controlling a remote desktop of the
remote machine,

means for translating the user input request into an input
command compatible with the push protocol;

means for facilitating providing the input command to the
remote machine utilizing the push protocol,

wherein the means for receiving the remote desktop draw-
ing command comprises means for receiving the remote
desktop drawing command in response to the input com-
mand.

34. The apparatus of clause 28, wherein the apparatus is the
web server.

35. The apparatus of clause 28, wherein the apparatus
comprises a processing system and a memory.

Iustration of Method/ Apparatus/Machine Readable Stor-
age Medium for facilitating a remote desktop session for a
web browser and a remote desktop server (described as
Clauses).

US 9,244,912 B1

89

The subject technology is illustrated, for example, accord-
ing to various aspects described below. Various examples of
aspects of the subject technology are described as numbered
clauses (1, 2, 3, etc.) for convenience. These are provided as
examples, and do not limit the subject technology. It is noted
that any of the dependent clauses may be combined in any
combination, and placed into a respective independent clause.
Clause 1 below is presented, for example, with reference to
FIG. 23A. The other clauses can be presented in a similar
manner.

1. A method (see, e.g., method 2300-A of FIG. 23A) for
facilitating a remote desktop session between a web browser
(see, e.g., 810 of FIG. 8A) of a client device (see, e.g., 802 of
FIG. 8A) and a remote desktop server at a remote machine
(see, e.g., 830 of FIG. 8 A) through a web server (see, e.g., 820
of FIG. 8A), utilizing a wrapper (see, ¢.g., 826 of FIG. 8A) of
the web server (see, e.g., 820 of FIG. 8A), the method com-
prising:

receiving, at the wrapper, an input request from the web
browser utilizing a request-response protocol, wherein the
request-response protocol is a pull protocol (see, e.g., 2302-A
of FIG. 23A),

translating, at the wrapper, the input request into an input
command compatible with a remote desktop display protocol
to be utilized by a remote desktop client at the web server for
facilitating communication with the remote desktop server at
the remote machine, wherein the remote desktop display pro-
tocol is a push protocol (see, e.g., 2304-A of FIG. 23A);

providing the input command to the remote desktop client
atthe web server, to facilitate providing the input command to
the remote desktop server utilizing the remote desktop dis-
play protocol (see, e.g., 2306-A of FIG. 23A);

receiving, at the wrapper, a remote desktop drawing com-
mand from the remote desktop server in response to the input
command, wherein the remote desktop drawing command is
based on an image of a remote desktop of the remote machine
(see, e.g., 2308-A of FIG. 23A); and

translating, at the wrapper, the remote desktop drawing
command into a graphics drawing command compatible with
the web server to allow the web server to facilitate providing
a web browser drawing update to the web browser, wherein
the web browser comprises a windows web browser and the
web browser drawing update is compatible with the windows
web browser (see, e.g., 2310-A of FIG. 23A).

2. The method of clause 1, wherein the request-response
protocol comprises hypertext transfer protocol (HTTP),
wherein the graphics drawing command is a windows graph-
ics drawing command, wherein the web server is a windows
web server, wherein the web browser is hypertext markup
language 5 (HTMLS) compatible.

3. The method of clause 1, wherein the receiving the input
request comprises receiving the input request from the web
browser via an HT'TP handler of a web application including
an ASPNET model-view-controller (MVC) at the web
servet,

wherein the receiving the remote desktop drawing com-
mand comprises receiving the remote desktop drawing com-
mand via the remote desktop client using the remote desktop
display protocol,

wherein the remote desktop drawing command comprises
remote desktop drawing command parameters and bitmap
data received from the remote desktop server, and

wherein the translating the remote desktop drawing com-
mand comprises one or more of: calculating new drawing
command parameters based on the remote desktop drawing

10

20

35

40

45

90

command parameters; adjusting the remote desktop drawing
command parameters; and making adjustments to the bitmap
data.

4. The method of clause 1, comprising:

executing the graphics drawing command to generate and
draw an image into a drawing commands module at the web
server that is accessible by an HTTP handler at the web server
for communicating with the web browser;

generating coordinates for the image based on the graphics
drawing command;

storing the coordinates in the drawing commands queue;

after generating the coordinates, transmitting a notification
to the HTTP handler that a drawing command is ready to be
served to the web browser,

wherein each of the image and the graphics drawing com-
mand represents a portion of an image of the remote desktop;

updating at least a portion of an oft-screen bitmap based on
the graphics drawing command, wherein the at least a portion
of the off-screen bitmap is associated with the coordinates,
wherein the off-screen bitmap represents an image of the
remote desktop.

5. The method of clause 1, comprising:

receiving, via an HTTP handler of the web server, a con-
nection request from the web browser; and

facilitating establishing, controlling or terminating the
remote desktop session between the remote desktop client
and the remote desktop server in response to the connection
request, wherein the facilitating of the establishing, control-
ling or terminating comprises:

generating a session control command based on the con-

nection request, wherein the session control command is
compatible with the remote desktop display protocol;
and

facilitating transmitting the session control command to

the remote desktop server via the remote desktop client
using the remote desktop display protocol, wherein the
session control command comprises at least one of: a
command for starting the remote desktop session, a
command for stopping the remote desktop session, a
credential, a setting, a preference, and a command for
passing at least one of a credential, a setting, and a
preference.

6. A method for facilitating accessing and controlling a
remote desktop of a remote machine in real time from a web
browser of a client device utilizing a web server, the method
comprising:

receiving, at the web server, a connection request from the
web browser utilizing HTTP;

translating, at the web server, the connection request into a
session control command compatible with a remote desktop
display protocol;

providing the session control command to a remote desk-
top client of the web server for providing the session control
command to a remote desktop server of the remote machine
and for establishing, controlling or terminating a remote
desktop session with the remote desktop server;

receiving, at the web server, a user input request from the
web browser utilizing HTTP,

translating, at the web server, the user input request into a
remote desktop input command compatible with the remote
desktop display protocol;

providing the remote desktop input command to the remote
desktop client for providing the remote desktop input com-
mand to the remote desktop server;

receiving, at the web server, a remote desktop drawing
command from the remote desktop server via the remote
desktop client in response to the remote desktop input com-

US 9,244,912 B1

91

mand, wherein the remote desktop drawing command is com-
patible with the remote desktop display protocol, and wherein
the remote desktop drawing command represents a portion of
an image of the remote desktop;

translating, at the web server, the remote desktop drawing
command into a graphics drawing command compatible with
the web server;

updating, at the web server, a portion of an image and
coordinates based on the graphics drawing command;

generating, at the web server, an image file based on the
updated portion of the image;

obtaining drawing coordinates based on the coordinates;
and

facilitating providing a web browser drawing update to the
web browser in response to a drawing request from the web
browser, wherein the web browser drawing update comprises
the image file and the drawing coordinates, and wherein the
web browser drawing update is compatible with the web
browser,

wherein the remote desktop drawing command represents
a portion of the remote desktop, and the image represents the
remote desktop,

wherein (i) the web server comprises a windows web
server, (i1) the web browser is s windows web browser, (iii)
the remote desktop display protocol is a push protocol, and
(iv) HTTP is a pull protocol.

7. The method of clause 6, wherein the user input request
comprises at least one of a mouse event, akeyboard event, and
atouch event, wherein the updating a portion of an image and
coordinates comprises storing the portion of the image and
the coordinates into a drawing commands queue, wherein the
graphics drawing command is a windows graphics drawing
command, and wherein the web browser is HTMLS compat-
ible.

8. The method of clause 6, wherein the updating a portion
of'an image and coordinates comprises storing the portion of
the image and the coordinates into a drawing commands
buffer,

wherein the method comprises an asynchronous request
handling comprising: receiving the drawing request from the
web browser utilizing HTTP; forwarding the drawing request
to an HTTP handler module if coordinates for an image are
pending in the drawing commands buffer; placing the draw-
ing request into a drawing requests queue if coordinates for an
image are not pending in the drawing commands buffer, and

wherein the method comprises: sending a notification to
the drawing requests queue if the drawing commands buffer
receives a new drawing command comprising an image and
coordinates for an image.

9. The method of clause 6, comprising:

forwarding the drawing request to an HTTP handler in
response to a notification from a drawing commands buffer
that a drawing command is pending for the web browser;

placing the drawing coordinates into a section of an HT'TP
header, wherein the image file comprises a windows image
file and the facilitating providing the web browser drawing
update comprises facilitating providing the windows image
file and the drawing coordinates together to the web browser
in a single HTTP transmission response for drawing a display
image at the web browser, wherein the display image repre-
sents the updated portion of the image representing the
remote desktop;

facilitating providing script client code compatible with
the web browser, to the web browser, if the connection request
from the web browser comprises a request to connect to the
remote machine.

10

20

30

35

40

45

50

55

92

10. A machine-readable storage medium (see, e.g., 1210,
1219 in FIGS. 12 and 2300-B of FIG. 23B) comprising
instructions stored therein, the instructions executable by one
or more processors (see, e.g., 1202) to perform a one or more
operations, the instructions comprising:

code for causing one or more processors to facilitate
receiving an input request from a web browser utilizing a
request-response protocol, wherein the request-response pro-
tocol is a pull protocol (see, e.g., 2302-B of FIG. 23B);

code for causing one or more processors to translate the
input request into an input command compatible with a
remote desktop display protocol to be utilized by a remote
desktop client for facilitating communication with a remote
desktop server, wherein the remote desktop display protocol
is a push protocol (see, e.g., 2304-B of FIG. 23B);

code for causing one or more processors to facilitate pro-
viding the input command to the remote desktop client at the
web server, to facilitate providing the input command to the
remote desktop server utilizing the remote desktop display
protocol (see, e.g., 2306-B of FIG. 23B);

code for causing one or more processors to facilitate
receiving a remote desktop drawing command from the
remote desktop server in response to the input command,
wherein the remote desktop drawing command is based on an
image of a remote desktop of the remote machine (see, e.g.,
2308-B of FIG. 23B); and

code for causing one or more processors to translate the
remote desktop drawing command into a graphics drawing
command to facilitate providing a web browser drawing
update to the web browser, wherein the web browser com-
prises a windows web browser and the web browser drawing
update is compatible with the web browser (see, e.g., 2310-B
of FIG. 23B).

11. The machine-readable storage medium of clause 10,
wherein the request-response protocol comprises hypertext
transfer protocol (HTTP), wherein the graphics drawing com-
mand is a windows graphics drawing command, wherein a
web server is for the remote desktop client a windows web
server, wherein the web browser is HTMLS compatible.

12. The machine-readable storage medium of clause 10,
wherein the code for causing one or more processors to facili-
tate receiving the input request comprises code for causing
one or more processors to facilitate receiving the input
request from the web browser via an HTTP handler of a web
application at a web server,

wherein the code for causing one or more processors to
facilitate receiving the remote desktop drawing command
comprises code for causing one or more processors to facili-
tate receiving the remote desktop drawing command via the
remote desktop client using the remote desktop display pro-
tocol,

wherein the remote desktop drawing command comprises
remote desktop drawing command parameters and bitmap
data received from the remote desktop server, and

wherein the code for causing one or more processors to
translate the remote desktop drawing command comprises
one or more of: code for causing one or more processors to
calculate new drawing command parameters based on the
remote desktop drawing command parameters; code for caus-
ing one or more processors to adjust the remote desktop
drawing command parameters; and code for causing one or
more processors to make adjustments to the bitmap data.

13. The machine-readable storage medium of clause 10,
wherein the instructions comprise:

code for causing one or more processors to execute the
graphics drawing command to generate and draw an image

US 9,244,912 B1

93

into a drawing commands module at the web server that is
accessible by HTTP handler at the web server for communi-
cating with the web browser;
code for causing one or more processors to generate coor-
dinates for the image based on the graphics drawing com-
mand;
code for causing one or more processors to store the coor-
dinates in the drawing commands queue;
after generating the coordinates, code for causing one or
more processors to transmit a notification to the HT'TP han-
dler that a drawing command is ready to be served to the web
browser,
wherein each of the image and the graphics drawing com-
mand represents a portion of an image of the remote desktop;
code for causing one or more processors to update at least
aportion of an oft-screen bitmap based on the graphics draw-
ing command, wherein the at least a portion of the off-screen
bitmap is associated with the coordinates, wherein the off-
screen bitmap represents an image of the remote desktop.
14. The machine-readable storage medium of clause 10,
wherein the instructions comprise:
code for causing one or more processors to facilitate
receiving, via an HTTP handler of a web server, a connection
request from the web browser; and
code for causing one or more processors to facilitate estab-
lishing, controlling or terminating the remote desktop session
between the remote desktop client and the remote desktop
server in response to the connection request, wherein the code
for causing one or more processors to facilitate of the estab-
lishing, controlling or terminating comprises:
code for causing one or more processors to generate a
session control command based on the connection
request, wherein the session control command is com-
patible with the remote desktop display protocol; and

code for causing one or more processors to facilitate trans-
mitting the session control command to the remote desk-
top server via the remote desktop client using the remote
desktop display protocol, wherein the session control
command comprises at least one of: a command for
starting the remote desktop session, acommand for stop-
ping the remote desktop session, a credential, a setting,
a preference, and a command for passing at least one of
a credential, a setting, and a preference.

15. A computing machine comprising the machine-read-
able storage medium of clause 10, wherein the computing
machine is a web server.

16. A machine-readable storage medium comprising
instructions stored therein, the instructions executable by one
or more processors to facilitate accessing and controlling a
remote desktop of a remote machine in real time from a web
browser of a client device via a hypertext transfer protocol
(HTTP) handler and a remote desktop client wrapper for a
web server, the machine-readable storage medium compris-
ing:

the HTTP handler; and

the remote desktop client wrapper,

wherein the HTTP handler is configured to facilitate
receiving a connection request and a user input request from
the web browser utilizing HTTP, to facilitate providing the
connection request and the user input request to the remote
desktop client wrapper, and to facilitate providing a web
browser drawing update to the web browser in response to a
drawing request from the web browser, wherein the web
browser drawing update is compatible with the web browser,

wherein the remote desktop client wrapper is configured to
facilitate receiving the connection request and the user input
request, to translate the connection request into a session

10

15

20

25

30

35

40

45

50

55

60

65

94

control command compatible with a remote desktop display
protocol, and to translate the user input request into a remote
desktop input command compatible with the remote desktop
display protocol,

wherein the remote desktop client wrapper is configured to
facilitate providing the session control command to a remote
desktop client for providing the session control command to
a remote desktop server of the remote machine and for estab-
lishing, controlling or terminating a remote desktop session
with the remote desktop server,

wherein the remote desktop client wrapper is configured to
facilitate providing the remote desktop input command to the
remote desktop client for providing the remote desktop input
command to the remote desktop server,

wherein the remote desktop client wrapper is configured to
facilitate receiving a remote desktop drawing command from
the remote desktop server via the remote desktop client in
response to the remote desktop input command, wherein the
remote desktop drawing command is compatible with the
remote desktop display protocol,

wherein the remote desktop client wrapper is configured to
translate the remote desktop drawing command into a graph-
ics drawing command compatible with the web server, and to
update a portion of an image representing the remote desktop
and coordinates based on the graphics drawing command,
and

wherein the HTTP handler is configured to generate an
image file based on the updated portion of the image and to
obtain drawing coordinates based on the coordinates in
response to the drawing request, wherein the web browser
drawing update comprises the image file and the drawing
coordinates,

wherein the remote desktop drawing command represents
aportion of the remote desktop, and the image represents the
remote desktop

wherein (i) the web server comprises a windows web
server, (i1) the web browser is s windows web browser, (iii)
the remote desktop display protocol is a push protocol, and
(iv) HTTP is a pull protocol.

17. The machine-readable storage medium of clause 16,
wherein the user input request comprises at least one of a
mouse event, a keyboard event, and a touch event, wherein the
remote desktop client wrapper is configured to update a por-
tion of an image and coordinates by storing the portion of the
image and the coordinates into a drawing commands buffer,
wherein the graphics drawing command is a windows graph-
ics drawing command, and wherein the web browser is
HTMLS5 compatible.

18. The machine-readable storage medium of clause 16,
comprising an asynchronous handler configured to handle
requests asynchronously by: facilitate receiving the drawing
request from the web browser utilizing HTTP; forwarding the
drawing request to an HTTP handler module if coordinates
for an image are pending in the drawing commands buffer;
placing the drawing request into a drawing requests queue if
coordinates for an image are not pending in the drawing
commands buffer, and

wherein the HTTP handler is configured to send a notifi-
cation to the drawing requests queue if the drawing com-
mands buffer receives a new drawing command comprising
an image and coordinates for an image.

19. The machine-readable storage medium of clause 16,
wherein the web server is configured to forward the drawing
request to the HTTP handler in response to a notification from
a drawing commands buffer that a drawing command is pend-
ing for the web browser,

US 9,244,912 B1

95

wherein the HTTP handler is configured to place the draw-
ing coordinates into a section of an HT'TP header, wherein the
image file comprises a windows image file and to facilitate
providing the windows image file and the drawing coordi-
nates together to the web browser in a single HTTP transmis-
sion response for drawing a display image at the web browser,
wherein the display image represents the updated portion of
the image representing the remote desktop, and

wherein the HTTP handler is configured to facilitate pro-
viding script client code compatible with the web browser, to
the web browser, if the connection request from the web
browser comprises a request to connect to the remote
machine.

20. An apparatus (see, e.g., 2300-C of FIG. 23C) for facili-
tating a remote desktop session between a web browser of a
client device and a remote desktop server of a remote machine
through a web server, utilizing a wrapper at the web server,
the apparatus comprising:

means for receiving an input request from the web browser
utilizing a request-response protocol, wherein the request-
response protocol is a pull protocol (see, e.g., 2302-C of FIG.
230);

means for translating the input request into an input com-
mand compatible with a remote desktop display protocol to
be utilized by a remote desktop client at the web server for
facilitating communication with the remote desktop server at
the remote machine, wherein the remote desktop display pro-
tocol is a push protocol (see, e.g., 2304-C of FIG. 23C);

means for providing the input command to a remote desk-
top client at the web server, to facilitate providing the input
command to the remote desktop server utilizing the remote
desktop display protocol (see, e.g., 2306-C of FIG. 23C);

means for receiving a remote desktop drawing command
from the remote desktop server in response to the input com-
mand, wherein the remote desktop drawing command is
based on an image of a remote desktop of the remote machine
(see, e.g., 2308-C of FIG. 23C); and

means for translating the remote desktop drawing com-
mand into a graphics drawing command compatible with the
web server to allow the web server to facilitate providing a
web browser drawing update to the web browser, wherein the
web browser comprises a windows web browser and the web
browser drawing update is compatible with the windows web
browser (see, e.g., 2310-C of FIG. 23C).

21. The apparatus of clause 20, wherein the request-re-
sponse protocol comprises hypertext transfer protocol
(HTTP), wherein the graphics drawing command is a win-
dows graphics drawing command, wherein the web server is
a windows web server, wherein the web browser is HTML5
compatible.

22. The apparatus of clause 20, wherein the means for
receiving the input request comprises means for receiving the
input request from the web browser via an HTTP handler of a
web application at the web server,

wherein the means for receiving the remote desktop draw-
ing command comprises means for receiving the remote
desktop drawing command via the remote desktop client
using the remote desktop display protocol,

wherein the remote desktop drawing command comprises
remote desktop drawing command parameters and bitmap
data received from the remote desktop server, and

wherein the translating the remote desktop drawing com-
mand comprises one or more of: calculating new drawing
command parameters based on the remote desktop drawing
command parameters; adjusting the remote desktop drawing
command parameters; and making adjustments to the bitmap
data.

25

35

40

45

50

55

96

23. The apparatus of clause 20, comprising:

means for executing the graphics drawing command to
generate and draw an image into a drawing commands mod-
ule at the web server that is accessible by an HT'TP handler at
the web server for communicating with the web browser;

means for generating coordinates for the image based on
the graphics drawing command;

means for storing the coordinates in the drawing com-
mands queue;

means for transmitting a notification to the HTTP handler
that a drawing command is ready to be served to the web
browser, after generating the coordinates,

wherein each of the image and the graphics drawing com-
mand represents a portion of an image of the remote desktop;

means for updating at least a portion of an off-screen bit-
map based on the graphics drawing command, wherein the at
least a portion of the off-screen bitmap is associated with the
coordinates, wherein the off-screen bitmap represents an
image of the remote desktop.

24. The apparatus of clause 20, comprising:

means for receiving, via an HTTP handler of the web
server, a connection request from the web browser; and

means for facilitating establishing, controlling or terminat-
ing the remote desktop session between the remote desktop
client and the remote desktop server in response to the con-
nection request, wherein the means for facilitating of the
establishing, controlling or terminating comprises:

means for generating a session control command based on

the connection request, wherein the session control
command is compatible with the remote desktop display
protocol; and

means for facilitating transmitting the session control com-

mand to the remote desktop server via the remote desk-
top client using the remote desktop display protocol,
wherein the session control command comprises at least
one of: a command for starting the remote desktop ses-
sion, a command for stopping the remote desktop ses-
sion, a credential, a setting, a preference, and a com-
mand for passing at least one of a credential, a setting,
and a preference.

25. An apparatus for facilitating accessing and controlling
aremote desktop of a remote machine in real time from a web
browser of a client device utilizing a web server, the apparatus
comprising:

means for receiving a connection request from the web
browser utilizing HTTP;

means for translating the connection request into a session
control command compatible with a remote desktop display
protocol;

means for providing the session control command to a
remote desktop client of the web server for providing the
session control command to a remote desktop server of the
remote machine and for establishing, controlling or terminat-
ing a remote desktop session with the remote desktop server;

means for receiving a user input request from the web
browser utilizing HTTP,

means for translating the user input request into a remote
desktop input command compatible with the remote desktop
display protocol;

means for providing the remote desktop input command to
the remote desktop client for providing the remote desktop
input command to the remote desktop server;

means for receiving a remote desktop drawing command
from the remote desktop server via the remote desktop client
in response to the remote desktop input command, wherein
the remote desktop drawing command is compatible with the

US 9,244,912 B1

97

remote desktop display protocol, and wherein the remote
desktop drawing command represents a portion of an image
of the remote desktop;

means for translating the remote desktop drawing com-
mand into a graphics drawing command compatible with the
web server;

means for updating a portion of an image and coordinates
based on the graphics drawing command;

means for generating an image file based on the updated
portion of the image;

means for obtaining drawing coordinates based on the
coordinates; and

means for facilitating providing a web browser drawing
update to the web browser in response to a drawing request
from the web browser, wherein the web browser drawing
update comprises the image file and the drawing coordinates,
and wherein the web browser drawing update is compatible
with the web browser,

wherein the remote desktop drawing command represents
a portion of the remote desktop, and the image represents the
remote desktop,

wherein (i) the web server comprises a windows web
server, (i1) the web browser is s windows web browser, (iii)
the remote desktop display protocol is a push protocol, and
(iv) HTTP is a pull protocol.

26. The apparatus of clause 25, wherein the user input
request comprises at least one of a mouse event, a keyboard
event, and a touch event, wherein the means for updating a
portion of an image and coordinates comprises means for
storing the portion of the image and the coordinates into a
drawing commands queue, wherein the graphics drawing
command is a windows graphics drawing command, and
wherein the web browser is HTMLS5 compatible.

27. The apparatus of clause 25, wherein the means for
updating a portion of an image and coordinates comprises
means for storing the portion of the image and the coordinates
into a drawing commands buffer,

wherein the apparatus comprises means for asynchronous
request handling comprising: means for receiving the draw-
ing request from the web browser utilizing HTTP; means for
forwarding the drawing request to an HTTP handler module
if coordinates for an image are pending in the drawing com-
mands buffer; means for placing the drawing request into a
drawing requests queue if coordinates for an image are not
pending in the drawing commands buffer, and

wherein the apparatus comprises: means for sending a
notification to the drawing requests queue if the drawing
commands buffer receives a new drawing command compris-
ing an image and coordinates for an image.

28. The apparatus of clause 25, comprising:

means for forwarding the drawing request to an HTTP
handler in response to a notification from a drawing com-
mands buffer that a drawing command is pending for the web
browser;

means for placing the drawing coordinates into a section of
an HTTP header, wherein the image file comprises a windows
image file and the means for facilitating providing the web
browser drawing update comprises means for facilitating pro-
viding the windows image file and the drawing coordinates
together to the web browser in a single HTTP transmission
response for drawing a display image at the web browser,
wherein the display image represents the updated portion of
the image representing the remote desktop;

means for facilitating providing script client code compat-
ible with the web browser, to the web browser, if the connec-
tion request from the web browser comprises a request to
connect to the remote machine.

10

25

30

35

40

45

50

98

29. The apparatus of clause 25, wherein the apparatus is the
web server.

30. The apparatus of clause 25, wherein the apparatus
comprises a processing system and memory.

31. An Apparatus comprising modules configured to per-
form the method of any one of the forgoing clauses.

32. The apparatus of clause 31, comprising the web server.

33. The apparatus of clause 31, comprising a processing
system and memory.

34. A machine-readable storage medium comprising code
for causing the web server to perform the method of any one
of the forgoing clauses.

35. The machine-readable storage medium of clause 34,
wherein the web server comprises the machine-readable stor-
age medium.

36. An apparatus comprising means for performing the
method of any one of the forgoing clauses.

37. The apparatus of clause 36, comprising a web server.

38. The apparatus of clause 36, comprising a processing
system and memory.

39. An apparatus comprising components operable to per-
form the method of any one of the forgoing clauses.

40. The apparatus of clause 39, comprising a web server.

41. The apparatus of clause 39, comprising a processing
system and memory.

Without limitation and without limiting the scope of the
foregoing clauses or this disclosure, in one aspect, illustra-
tions of the foregoing clauses may include FIGS. 8-11 with
the corresponding description in the disclosure.

Without limitation and without limiting the scope of the
foregoing clauses or this disclosure, in one aspect, the fore-
going clauses are re-stated herein and FIGS. 14A through 19E
are re-drawn herein, with the phrase “transcoding server”
replaced with the phrase “web server” (e.g., 820 in FIG. 8),
with the phrase “long polling request” replaced with the
phrase “asynchronous request”, and with the phrase
“adapter” replaced with the phrase “Wrapper.”

Without limitation and without limiting the scope of the
foregoing clauses or this disclosure, referring to FIG. 8, the
foregoing clauses and the previous paragraph, in one aspect,
anexample of a client device may be client device 802 of FIG.
8, an example of aremote machine may be 830, an example of
a web browser may be 810, an example of a web application
container may be 822. an example of a HT TP handler may be
344, an example of a transcoder server may be 820, an
example of a HTTP handler may be 824, and an example of a
remote desktop client adaptor may be 826. an example of a
HTTP handler may be 344. Referring to FIG. 9, the foregoing
clauses and the previous paragraph, in one aspect, an example
of a transcoding server may be web server 901 of FIG. 9, an
example of a HTTP handler may be 912, 916, and an example
of a long polling handler may be 914.

In one aspect, any of the clauses herein may depend from
any one of the independent clauses or any one of the depen-
dent clauses. In one aspect, any of the clauses (e.g., dependent
or independent clauses) may be combined with any other
clauses (e.g., dependent or independent clauses). In one
aspect, a claim may include some or all of the words (e.g.,
steps, operations, means or components) recited in a clause, a
sentence, a phrase or a paragraph. In one aspect, a claim may
include some or all of the words recited in one or more
clauses, sentences, phrases or paragraphs. In one aspect,
some of the words in each of the clauses, sentences, phrases or
paragraphs may be removed. In one aspect, additional words
or elements may be added to a clause, a sentence, a phrase or
a paragraph. In one aspect, the subject technology may be
implemented without utilizing some of the components, ele-

US 9,244,912 B1

99

ments, functions or operations described herein. In one
aspect, the subject technology may be implemented utilizing
additional components, elements, functions or operations.

Those of skill in the art would appreciate that the various
illustrative blocks, modules, elements, components, meth-
ods, and algorithms described herein may be implemented as
electronic hardware, computer software, or combinations of
both.

For example, a module (e.g., a web application container, a
long polling handler module, a long polling handler, a draw-
ing requests queue, an HTTP handler, an image conversion
module, a drawing commands queue, a remote desktop client
adapter, a remote desktop client, a remote desktop server, an
input listener, an image.onload handler, an image.onerror/
image.on abort handler, a drawing command handler, a
remote desktop client manager, a user input handler, an
HTML canvas, a script client, an HTTP handler, a remote
desktop client wrapper, an HTTP handler response ready, an
HTTP request switch, a drawing coordinates queue, a
memory bitmap, a drawing commands module, a remote
desktop session module, a user input module, or other mod-
ules or functions) may be implemented as electronic hard-
ware, computer software, or combinations of both. Modules
may be considered in some aspects as “means for” accom-
plishing one or more functions or steps. In one aspect, a
module(s) may be an apparatus since a module(s) may
include instructions encoded or stored on a machine-readable
medium, on another device, or on a portion thereof, where an
instruction(s) may be software, an application(s), a subrou-
tine(s), or a portion thereof, where the instructions(s) may be
for performing the function(s) or operation(s). In one aspect,
a module(s) may be software (e.g., an application, a subrou-
tine) stored in a machine-readable medium and executable by
a processing system or a processor. In another aspect, a mod-
ule(s) may be hardware (e.g., machine-readable medium
encoded with instructions, a pre-programmed general-pur-
pose computer with for example ASIC or FPGA, or a special
purpose electronic or optical device). In an aspect, a module
may be implemented as one or more circuits configured to
perform the function(s) or operation(s). A circuit may include
one or more circuits and/or logic. A circuit may be analog
and/or digital. A circuit may be electrical and/or optical. A
circuit may include transistors. In an example, one or more
modules may be implemented as a processing system (e.g., a
digital signal processor (DSP), an application specific inte-
grated circuit (ASIC), a field programmable gate array
(FPGA), etc.), as a portion(s) of any of the foregoing, or as a
combination(s) of any of the foregoing. Those skilled in the
art will recognize how to implement the instructions, circuits,
and processing systems.

To illustrate this interchangeability of hardware and soft-
ware, various illustrative blocks, modules, elements, compo-
nents, methods, and algorithms have been described above
generally in terms of their functionality. Whether such func-
tionality is implemented as hardware or software depends
upon the particular application and design constraints
imposed on the overall system. Skilled artisans may imple-
ment the described functionality in varying ways for each
particular application.

In one aspect of the disclosure, when actions or functions
(e.g., receiving, determining, providing, generating, convert-
ing, displaying, notifying, accepting, selecting, controlling,
transmitting, reporting, sending, establishing, building, or
any other action or function) are described as being per-
formed by an item (e.g., one or more of blocks, modules,
elements, components or processors), it is understood that
such actions or functions may be performed, for example, by

10

15

20

25

30

35

40

45

50

55

60

65

100

the item directly or indirectly. In an example, when an item is
described as performing an action, the item may be under-
stood to perform the action indirectly, for example, by facili-
tating such an action (e.g., assisting, allowing, enabling, caus-
ing, or providing for, such action to occur; or performing a
portion of such an action). For example, determining can refer
to facilitating determination, attaching can refer to facilitating
attaching, and receiving can refer to facilitating receiving. For
instance, facilitating receiving an item may, for example,
include providing a code to allow an entity to receive the item.
For instance, when a session is described as being established
by a module, it is understood that the module may establish
the session indirectly by facilitating an establishment of the
session. As yet another example, when an image is described
as being displayed or rendered by a module, it is understood
that the image may be displayed or rendered by the module
either directly or indirectly. In one aspect, performing an
action may refer to performing a portion of the action (e.g.,
performing a beginning part of the action, performing an end
part of the action, or performing a middle portion of the
action).

Various components and blocks may be arranged differ-
ently (e.g., arranged in a different order, or partitioned in a
different way) all without departing from the scope of the
subject technology. In one aspect of the disclosure, the mod-
ules (or elements) recited in the accompanying claims may be
performed by one module or by a smaller number of modules,
and this arrangement is within the scope of the claims. In
another aspect, the modules (or elements) recited in the
accompanying claims may be performed by a larger number
of modules, and this arrangement is within the scope of the
claims. In yet another aspect, a module (or an element) recited
in the accompanying claims may be performed by multiple
modules, and this arrangement is within the scope of the
claims.

It is understood that the specific order or hierarchy of steps
in the processes disclosed is an illustration of exemplary
approaches. Based upon design preferences, it is understood
that the specific order or hierarchy of steps in the processes
may be rearranged. Some of the steps may be performed
simultaneously. The accompanying method claims present
elements of the various steps in a sample order, and are not
meant to be limited to the specific order or hierarchy pre-
sented.

The previous description is provided to enable any person
skilled in the art to practice the various aspects described
herein. The previous description provides various examples
of the subject technology, and the subject technology is not
limited to these examples. Various modifications to these
aspects will be readily apparent to those skilled in the art, and
the generic principles defined herein may be applied to other
aspects. Thus, the claims are not intended to be limited to the
aspects shown herein, but is to be accorded the full scope
consistent with the language claims, wherein reference to an
element (e.g., a command, a call, a handler, a device, a
machine, etc.) in the singular is not intended to mean “one and
only one” unless specifically so stated, but rather “one or
more.” Unless specifically stated otherwise, the term “some”
refers to one or more. Pronouns in the masculine (e.g., his)
include the feminine and neuter gender (e.g., her and its) and
vice versa. Headings and subheadings, if any, are used for
convenience only and do not limit the invention.

A phrase such as an “aspect” does not imply that such
aspect is essential to the subject technology or that such
aspect applies to all configurations of the subject technology.
A disclosure relating to an aspect may apply to all configu-
rations, or one or more configurations. An aspect may provide

US 9,244,912 B1

101

one or more examples of the disclosure. A phrase such as an
aspect may refer to one or more aspects and vice versa. A
phrase such as an “embodiment” does not imply that such
embodiment is essential to the subject technology or that such
embodiment applies to all configurations of the subject tech-
nology. A disclosure relating to an embodiment may apply to
all embodiments, or one or more embodiments. An embodi-
ment may provide one or more examples of the disclosure. A
phrase such an embodiment may refer to one or more embodi-
ments and vice versa. A phrase such as a “configuration” does
not imply that such configuration is essential to the subject
technology or that such configuration applies to all configu-
rations of the subject technology. A disclosure relating to a
configuration may apply to all configurations, or one or more
configurations. A configuration may provide one or more
examples of the disclosure. A phrase such a configuration
may refer to one or more configurations and vice versa.

The word “exemplary” is used herein to mean “serving as
an example or illustration.” Any aspect or design described
herein as “exemplary” is not necessarily to be construed as
preferred or advantageous over other aspects or designs.

Inoneaspect, the term “compatible” may be used in a sense
that a first element (e.g., a drawing command, an input call, an
input command, a connection request, a drawing request,
etc.) is compatible with a second element (e.g., a remote
desktop display protocol, a remote desktop client, a remote
desktop server, a transcoding server, a web browser, a client
device, a remote machine, HTMLS5, HTTP, etc.) so that the
first element can be recognized or understood by the second
element, can be processed by the second element, or can be
utilized by or with the second element.

All structural and functional equivalents to the elements of
the various aspects described throughout this disclosure that
are known or later come to be known to those of ordinary skill
in the art are expressly incorporated herein by reference and
are intended to be encompassed by the claims. Moreover,
nothing disclosed herein is intended to be dedicated to the
public regardless of whether such disclosure is explicitly
recited in the claims. No claim element is to be construed
under the provisions of 35 U.S.C. §112, sixth paragraph,
unless the element is expressly recited using the phrase
“means for” or, in the case of a method claim, the element is
recited using the phrase “step for.” Furthermore, to the extent
that the term “include,” “have,” or the like is used in the
description or the claims, such term is intended to be inclusive
in a manner similar to the term “comprise” as “comprise” is
interpreted when employed as a transitional word in a claim.

What is claimed is:

1. A method of facilitating conducting a remote desktop
session between a web browser of a client device and aremote
machine via a web server in real time and utilizing hypertext
markup language (HTML) that supports a two-dimensional
(2D) canvas and dynamic drawing, the method comprising:

receiving, at the web server, a user input request from the

web browser of the client device for access and control
of the remote machine, wherein the web browser sup-
ports a 2D canvas and dynamic drawing;
translating, at the web server, the user input request into an
input command compatible with a remote desktop dis-
play protocol to be utilized by the web server for facili-
tating communication with the remote machine;

receiving, at the web server, a remote desktop drawing
command from the remote machine in response to the
input command;

translating, at the web server, the remote desktop drawing

command into a windows graphics drawing command
by executing the windows graphics drawing command

10

15

20

25

30

35

40

45

50

55

60

65

102

to update a portion of a windows graphics application
programming interface (API) memory bitmap, wherein
the windows graphics API memory bitmap represents a
portion of an image of a remote desktop of the remote
machine that has changed relative to a previous graphics
drawing command; and

providing the windows graphics drawing command from

the web server to the web browser;

wherein the web server is an intermediary between the

remote machine and the client device, and wherein the
web server comprises a windows web server and is
physically separate from the remote machine.

2. The method of claim 1, wherein the web browser com-
prises a windows web browser and wherein the translating the
remote desktop drawing command comprises:

generating coordinates for the windows graphics API

memory bitmap based on the windows graphics drawing
command;
forming an image file including a windows image file
based on the windows graphics API memory bitmap,
wherein the image file is compatible with HTMLS; and

obtaining drawing coordinates for the image file based on
the coordinates for the windows graphics API memory
bitmap, wherein the drawing coordinates are compatible
with HTMLS,

wherein the windows graphics drawing command com-

prises the image file and the drawing coordinates for the
image file,

wherein the windows graphics drawing command repre-

sents a portion of the image of the remote desktop,
wherein the web browser comprises client script code;
wherein the method comprises receiving, at the web server,
drawing requests from the client script code of the web
browser,

wherein providing the windows graphics drawing com-

mand comprises providing the windows graphics draw-
ing command from the web server to the client script
code of the web browser in response to one of the draw-
ing requests from the client script code of the web
browser.

3. The method of claim 1, wherein the translating the
remote desktop drawing command comprises:

generating coordinates for the windows graphics API

memory bitmap;

forming an image file including a windows image file

based on the windows graphics API memory bitmap,
wherein the image file is HTMLS5 compatible; and
obtaining drawing coordinates for the image file, wherein
the drawing coordinates are compatible with HTMLS5,
wherein the windows graphics drawing command com-
prises the image file and the drawing coordinates for the
image file,

wherein the method comprises receiving, at the web server,

drawing requests from the web browser,

wherein providing the windows graphics drawing com-

mand comprises providing the windows graphics draw-
ing command from the web server to the web browser in
response to one of the drawing requests from the web
browser.

4. The method of claim 1, wherein the web server com-
prises a remote desktop client wrapper configured to translate
the user input request into the input command compatible
with the remote desktop display protocol and to translate the
remote desktop drawing command into the windows graphics
drawing command compatible with a windows web browser.

5. The method of claim 1, comprising receiving long asyn-
chronous HTTP requests from the web browser, wherein the

US 9,244,912 B1

103

asynchronous HTTP requests comprise drawing requests and
the web browser comprises a windows web browser.

6. The method of claim 1, comprising receiving from the
web browser an initial HTTP request comprising a uniform
resource locator (URL) of the remote machine.

7. The method of claim 6, comprising providing a script
client code to the web browser in response to the initial HTTP
request for the URL ofthe remote machine, wherein the script
client code is compatible with HTMLS.

8. The method of claim 1, wherein the remote desktop
drawing command is compatible with the remote desktop
display protocol, wherein the remote desktop display proto-
col is a push protocol, and wherein providing the windows
graphics drawing command comprises providing the win-
dows graphics drawing command using HTTP that is a pull
protocol.

9. The method of claim 1, wherein dynamic drawing com-
prises drawing in real time a portion of the 2D canvas, rather
than drawing the entire 2D canvas, in response to one or more
drawing requests of a script client of the web browser.

10. The method of claim 1, wherein the 2D canvas is
updatable by a portion at a time according to a set of coordi-
nates.

11. A machine-readable non-transitory storage medium
comprising instructions stored therein, the instructions
executable by one or more processors, the instructions com-
prising code for causing a processor to:

receive a user input request from a web browser of a client

device for access and control of a remote machine,
wherein the web browser supports a 2D canvas and
dynamic drawing;

translate the user input request into an input command

compatible with a remote desktop display protocol to be
utilized for facilitating communication with the remote
machine;
receive a remote desktop drawing command from the
remote machine in response to the input command;

translate the remote desktop drawing command into a win-
dows graphics drawing command by executing the win-
dows graphics drawing command to update a portion of
a windows graphics application programming interface
(API) memory bitmap, wherein the windows graphics
API memory bitmap represents a portion of an image of
a remote desktop of the remote machine that has
changed relative to a previous graphics drawing com-
mand; and

provide the windows graphics drawing command to the

web browser.

12. The machine-readable non-transitory storage medium
of claim 11, wherein the web browser comprises a windows
web browser and wherein translating the remote desktop
drawing command comprises code for causing the processor
to:

generate coordinates for the updated portion of the win-

dows graphics API memory bitmap based on the win-
dows graphics drawing command;

form an image file including a windows image file based on

the updated portion of the windows graphics API
memory bitmap, wherein the image file is compatible
with HTMLS5; and

obtain drawing coordinates for the image file based on the

coordinates for the updated portion of the windows
graphics APl memory bitmap, wherein the drawing
coordinates are compatible with HTMLS5,

wherein the windows graphics drawing command com-

prises the image file and the drawing coordinates for the
image file,

5

10

15

20

25

30

35

40

45

50

55

60

65

104

wherein the windows graphics drawing command repre-
sents a portion of the image of the remote desktop,
wherein the web browser comprises client script code;

wherein the instructions further comprise code for causing
the processor to receive, at a web server, drawing
requests from the client script code of the web browser,

wherein providing the windows graphics drawing com-
mand comprises code for causing the processor to pro-
vide the windows graphics drawing command from the
web server to the client script code of the web browser in
response to one of the drawing requests from the client
script code of the web browser.

13. The machine-readable non-transitory storage medium
of claim 11, wherein translating the remote desktop drawing
command comprises code for causing the processor to:

generate coordinates for the updated portion of the win-

dows graphics APl memory bitmap;

form an image file including a windows image file based on

the updated portion of the windows graphics API
memory bitmap, wherein the image file is HTMLS5 com-
patible; and
obtain drawing coordinates for the image file, wherein the
drawing coordinates are compatible with HTMLS5,

wherein the windows graphics drawing command com-
prises the image file and the drawing coordinates for the
image file,

wherein the instructions further comprise code for causing

the processor to receive, at the web server, drawing
requests from the web browser, and

wherein providing the windows graphics drawing com-

mand comprises providing the windows graphics draw-
ing command to the web browser in response to one of
the drawing requests from the web browser.

14. The machine-readable non-transitory storage medium
of'claim 11, wherein the remote desktop display protocol is to
be utilized by a web server, wherein the web server is an
intermediary between the remote machine and the client
device, wherein the web server comprises a windows web
server and is physically separate from the remote machine,
wherein the web server comprises a remote desktop client
wrapper configured to translate the user input request into the
input command compatible with the remote desktop display
protocol and to translate the remote desktop drawing com-
mand into the windows graphics drawing command compat-
ible with a windows web browser.

15. The machine-readable non-transitory storage medium
of'claim 11, wherein the instructions comprise code for caus-
ing the processor receive asynchronous HTTP requests from
the web browser, wherein the asynchronous HTTP requests
comprise drawing requests and the web browser comprises a
windows web browser.

16. The machine-readable non-transitory storage medium
of'claim 11, wherein the instructions comprise code for caus-
ing the processor to receive from the web browser an initial
HTTP request comprising a uniform resource locator (URL)
of the remote machine.

17. The machine-readable non-transitory storage medium
of'claim 16, wherein the instructions comprise code for caus-
ing the processor to provide a script client code to the web
browser in response to the initial HTTP request for the URL
of the remote machine, wherein the script client code is com-
patible with HTMLS.

18. The machine-readable non-transitory storage medium
of'claim 11, wherein the remote desktop drawing command is
compatible with the remote desktop display protocol,
wherein the remote desktop display protocol is a push proto-
col, and wherein providing the windows graphics drawing

US 9,244,912 B1

105

command comprises code for causing the processor to pro-
vide the windows graphics drawing command using HTTP
that is a pull protocol.

19. The machine-readable non-transitory storage medium
of'claim 11, wherein dynamic drawing comprises drawing in
real time a portion of the 2D canvas, rather than drawing the
entire 2D canvas, in response to one or more drawing requests
of a script client of the web browser.

20. The machine-readable non-transitory storage medium
of claim 11, wherein the 2D canvas is updatable by a portion
at a time according to a set of coordinates.

21. A computing machine comprising the machine-read-
able non-transitory storage medium of claim 11, wherein the
computing machine is a web server.

22. A system for facilitating conducting a remote desktop
session between a web browser of a client device and aremote
machine via a web server in real time and utilizing hypertext
markup language that supports a two-dimensional (2D) can-
vas and dynamic drawing, the system comprising:

a processor configured to:

receive a user input request from the web browser of the
client device for access and control of the remote
machine, wherein the web browser supports a 2D
canvas and dynamic drawing;

translate the user input request into an input command
compatible with a remote desktop display protocol to
be utilized by the web server for facilitating commu-
nication with the remote machine;

receive a remote desktop drawing command from the
remote machine in response to the input command;

translate the remote desktop drawing command into a
windows graphics drawing command by executing
the windows graphics drawing command to update a
portion of a windows graphics application program-
ming interface (API) memory bitmap, wherein the
windows graphics APl memory bitmap represents a
portion of an image of a remote desktop of the remote
machine that has changed relative to a previous graph-
ics drawing command; and

provide the windows graphics drawing command from
the web server to the web browser;

wherein the web server is an intermediary between the

remote machine and the client device, and wherein the
web server comprises a windows web server and is
physically separate from the remote machine.

23. The system of claim 22, wherein the web browser
comprises a windows web browser and translating the remote
desktop drawing command comprises:

generating coordinates for the updated portion of the win-

dows graphics API memory bitmap based on the win-
dows graphics drawing command;

forming an image file including a windows image file

based on the updated portion of the windows graphics
API memory bitmap, wherein the image file is compat-
ible with HTMLS5; and

obtaining drawing coordinates for the image file based on

the coordinates for the windows graphics API memory
bitmap, wherein the drawing coordinates are compatible
with HTMLS;

wherein the windows graphics drawing command com-

prises the image file and the drawing coordinates for the
image file,
wherein the windows graphics drawing command repre-
sents a portion of the image of the remote desktop,

wherein the web browser temporarily comprises client
script code during the remote desktop session while the
remote desktop session persists;

5

10

15

20

25

30

35

40

45

50

55

60

65

106

wherein the processor is further configured to receive
drawing requests from the client script code of the web
browser,

wherein providing the windows graphics drawing com-
mand comprises providing the windows graphics draw-
ing command from the web server to the client script
code of the web browser in response to one of the draw-
ing requests from the client script code of the web
browser.

24. The system of claim 22, wherein translating the remote
desktop drawing command comprises:

generating coordinates for the windows graphics API
memory bitmap;

forming an image file including a windows image file
based on the windows graphics API memory bitmap,
wherein the image file is HTMLS5 compatible; and

obtaining drawing coordinates for the image file, wherein
the drawing coordinates are compatible with HTMLS5,

wherein the windows graphics drawing command com-
prises the image file and the drawing coordinates for the
image file,

wherein the processor is further configured to receive
drawing requests from the web browser,

wherein providing the windows graphics drawing com-
mand providing the windows graphics drawing com-
mand from the web server to the web browser in
response to one of the drawing requests from the web
browser.

25. The system of claim 22, wherein the web server com-
prises a remote desktop client wrapper configured to translate
the user input request into the input command compatible
with the remote desktop display protocol and to translate the
remote desktop drawing command into the windows graphics
drawing command compatible with a windows web browser.

26. The system of claim 22, wherein the processor is fur-
ther configured to receive asynchronous HT TP requests from
the web browser, wherein the asynchronous HTTP requests
comprise drawing requests and the web browser comprises a
windows web browser.

27. The system of claim 22, wherein the processor is fur-
ther configured to receive from the web browser an initial
HTTP request comprising a uniform resource locator (URL)
of the remote machine.

28. The system of claim 27, wherein the processor is fur-
ther configured to provide a script client code to the web
browser in response to the initial HTTP request for the URL
of the remote machine, wherein the script client code is com-
patible with HTMLS.

29. The system of claim 22, wherein the remote desktop
drawing command is compatible with the remote desktop
display protocol, wherein the remote desktop display proto-
col is a push protocol, wherein providing the windows graph-
ics drawing command comprises providing the windows
graphics drawing command using HTTP that is a pull proto-
col, and wherein the windows graphics drawing command is
compatible with a windows web browser.

30. The system of claim 22, wherein dynamic drawing
comprises drawing in real time a portion of the 2D canvas,
rather than drawing the entire 2D canvas, in response to one or
more drawing requests of a script client of the web browser.

31. The system of claim 22, wherein the 2D canvas is
updatable by a portion at a time according to a set of coordi-
nates.

US 9,244,912 B1
107 108

32. The system of claim 22, wherein the system is the
windows web server.

33. The system of claim 22, wherein the system comprises
a processing system and a memory.

#* #* #* #* #*

